
SOFTWARE RELIABILITY IN SAFETY CRITICAL

SUPERVISION AND CONTROL OF NUCLEAR REACTORS

by

P. ARUN BABU

(ENGG02201004005)

Indira Gandhi Centre for Atomic Research, Kalpakkam

A thesis submitted to the
board of studies in engineering sciences
in partial fulfillment of requirements

for the degree of

DOCTOR OF PHILOSOPHY

of

HOMI BHABHA NATIONAL INSTITUTE

MAY − 2013

Certificate

I hereby certify that I have read this dissertation prepared under my direction and

recommend that it may be accepted as fulfilling the dissertation requirement.

Date :

Guide: Dr. T. Jayakumar

Place:

Statement by author

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at Homi Bhabha National Institute (HBNI) and is deposited in the

library to be made available to borrowers under rules of the HBNI.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgement of source is made. Requests for permission

for extended quotation from or reproduction of this manuscript in whole or in part may

be granted by the competent authority of HBNI when in his judgment the proposed

use of the material is in the interests of scholarship. In all other instances, however,

permission must be obtained from the author.

(P. Arun Babu)

Declaration

I, hereby declare that the investigation presented in the thesis has been carried out by

me.

The work is original and has not been submitted earlier as a whole or in part for a

degree/diploma at this or any other Institution/University.

(P. Arun Babu)

Abstract

1. Context

Software based systems have several advantages over hardware based systems in terms

of functionality, cost, flexibility, maintainability, reusability, etc. However, software is

prone to failure. Poorly written safety-critical software may lead to catastrophic failures

and life threatening situations. Hence, safety-critical software must be adequately

tested; and the probability of occurrence of software failures must be studied.

Quantification of software reliability is considered an unresolved issue; and existing

approaches and models have assumptions and limitations which are not acceptable for

safety applications. Also, to build reliable software, it is necessary to study the factors

which are likely to affect the software reliability.

2. Objectives

1. To propose an automated method to generate test cases, and to determine test

adequacy in safety-critical software.

2. To propose an approach to quantify software reliability in safety-critical systems

of nuclear reactors.

3. To study the factors affecting software reliability in such safety systems.

4. To understand the relationship between the software reliability and number of

faults remaining in the software.

5. To understand the relationship between the software reliability and safety in safety

critical systems.

i

Abstract / ii

3. Method

To quantify the software reliability, a hybrid approach using software verification and

mutation testing is proposed. Techniques to solve related issues such as quantification

of software test adequacy and detection of equivalent mutants are also presented. The

steps proposed to quantify software reliability are:

1. Generation of large number of test cases, where each test case has a unique

execution path. To achieve this, code coverage information and genetic algorithms

are used.

2. Verification of test cases using a semi-formal model, which is traceable to

requirements; and acts as a test oracle.

3. Calculation of test adequacy for the above generated test cases in the range [0,1]

using mutation score and conservative test coverage.

4. Calculation of software reliability using the computed test adequacy and the

amount of verification carried out.

The formulae for software reliability are derived, and the factors affecting software

reliability are presented. The proposed methods are applied to software in the following

instrumentation and control systems for fast breeder reactors:

1. Fresh Sub-assembly Handling System (FSHS)

2. Reactor Startup system (RSU)

3. Steam Generator Tube Leak Detection system (SGTLD)

4. Core Temperature Monitoring System (CTMS)

5. Radioactive Gaseous Effluent System (GES)

6. Safety Grade Decay Heat Removal system (SGDHR)

Also, for each case study, mutant characteristics during mutation testing, and the

relationship between software reliability and safety are presented.

Abstract / iii

4. Major results

1. For the case studies, the proposed test case generation technique has resulted in

high test adequacy. Using the generated test cases, the probability of software

failure in the case studies has been demonstrated to be < 10−5 for a random input

from the input domain, with 95% confidence level.

2. In mutation testing, for an effective set of test cases, the unkilled mutants have

been found to have lower variance in their properties when compared to the killed

mutants.

3. Three factors: (i) test adequacy, (ii) the amount of verification carried out, and (iii)

the amount of verified code reused; have been found to be affecting the software

reliability.

4. The results of present study suggest that software reliability estimates based on

the number of faults present in the software alone, are likely to be inaccurate for

safety-critical software.

5. The empirical results indicate that: for safety-critical software, the required safety

can be achieved by improving the reliability; however the vice-versa is not always

true.

5. Conclusion

The methods and analysis presented in this thesis demonstrate the use of software

testing to arrive at an estimate of the software reliability. The results on relationship

between the software reliability and safety in safety-critical systems would be helpful in

understanding the dynamics behind developing safer software based systems.

The proposed approaches can be used by safety-critical software developers to

improve the software reliability. Also, the regulators may use the techniques to verify

reliability, safety, and dependability claims.

List of publications

Journals

1. An intuitive approach to determine test adequacy in safety-critical software,

P. Arun Babu, C. Senthil Kumar, N. Murali, and T. Jayakumar,

ACM Sigsoft software engineering notes, Volume 37, Issue 5 (Sept. 2012).

2. A hybrid approach to quantify software reliability in safety systems of nuclear

reactors,

P. Arun Babu, C. Senthil Kumar, and N. Murali,

Annals of nuclear energy, Volume 50, December 2012, Pages 133−140.

3. Properties of software reliability in safety systems of nuclear reactors,

P. Arun Babu, C. Senthil Kumar, N. Murali, and T. Jayakumar,

Manuscript under review in Journal of systems and software.

Conferences/Symposiums/Articles

4. Software reliability in safety-critical applications:

A case study from the nuclear industry,

P. Arun Babu, C. Senthil Kumar, N. Murali and T. Jayakumar,

International Applied Reliability Symposium, Chennai, India, Oct. 2012.

5. Making formal software specification easy,

P. Arun Babu, N. Murali, P. Swaminathan, and C. Senthil Kumar,

2nd International Conference on Reliability, Safety and Hazard,

pages 511–516, Dec. 2010. doi: 10.1109/ICRESH.2010.5779603.

iv

List of publications / v

6. Semi-formal property verification in games,

P. Arun Babu and N. Murali,

Testing Experience, issue 15, pages 14–17, Sept. 2011.

Internal reports

Versions of the above publications have also appeared in the following internal reports:

1. A hybrid approach to quantify software reliability in safety systems

AERB/SRI/2012/2007

2. Method to determine adequacy of software testing for reliability estimation

of computer based systems in NPPs

AERB/SRI/2013/2010

3. Development of software reliability assessment methodology using model

and mutation based testing for systems important to safety in FBRs

EIRSG/ICG/RTSD/PRIS(G)/2012-13/IV(8a)

4. Test case adequacy assessment using mutation based testing and test

coverage for computer based safety related systems in FBRs

EIRSG/ICG/RTSD/PRIS(G)/2012-13/IV(8b)

Acknowledgements

• To my guide Dr. T. Jayakumar (Director, MMG, IGCAR) and my co-guide Dr.

Keshava Murthy (Head, RSDD, IGCAR) for being my source of guidance.

• To my other doctoral committee members: Dr. M. Sai Baba (Associate Director,

RMG, IGCAR) (who also acted as my troubleshooter) and Dr. S. Venugopal

(Associate Director, GRIP, IGCAR) for their guidance and mentoring.

• To Dr. P. Swaminathan (Former Group Director, EIG, IGCAR), for introducing and

motivating me to take up the research topic.

• To N. Murali (Associate Director, ICG, EIRSG, IGCAR) for being my friendly

technical advisor. His strong opinions, questions, and suggestions have

significantly improved my work.

• To Dr. C. Senthil Kumar (Scientific Officer/G, Safety Research Institute, AERB) for

being my collaborator. I am lucky to have worked with him, and I cannot thank

him enough for his patience during discussions and reviews.

• This thesis is case study centric, and cannot be completed without the help of

engineers (at EIRSG) associated with the systems, who have patiently helped me

in understanding the safety systems. I would like to thank Anindya Bhattacharyya,

A. Santhana Raj, M. Chandramouli Sharma (also my labmate), M. Manimaran,

Manoj, MA. Sanjith, and Saritha Menon.

• Special thanks to S.A.V Satyamurthy (Group Director, EIRSG), R. Jehadeesan

(Computer Division), and staff members for providing me the high performance

computing facility, which has led to quicker results.

vi

Acknowledgements / vii

• To A. Shanmugam, Aditya Gour, Alok Gupta, B. Sasidhar Rao, D.

Thirugnanamurthy, L. Srivani, M. Kasinathan, P. Parimalam, Patankar, R. P.

Behra, Venkat Kishore, and other EIRSG staff members for all the encouragement,

discussions, suggestions, and assistance.

• To the administrative staff of EIRSG for timely assistance.

• I am truly indebted to the contributors of free and open source software such as:

LATEX, OpenBSD, Vim, GCC, Erlang, Drakon, Python, Gnuplot, Graphviz, Linux, etc.

which have made my work easier.

• Many thanks to Dr. Baldev Raj (Former Director, IGCAR), Brad Stewart (Developer

Geeks), Prof. Dick Hamlet (Portland State University), and S. Kishore (FRTG,

IGCAR) for allowing me to use their published materials in my thesis.

• To the reviewers and editors of journals, conferences, and symposiums for

reviewing my work.

• To my dear parents and friends: Anil, Ashutosh, Biju, Bubathi, Deepak, Govindha,

Hari Babu, Hemangi, Naveen, Paawan (also my labmate), Rajini, Ravikirna,

Saptarishi, Sharath, Srihari, Subhra, and others for all the fun times we had and

for just being there for me.

• To the Department of Atomic Energy (DAE) for providing me the generous DAE

Graduate Fellowship Scheme (DGFS) Ph.D fellowship.

P. Arun Babu

Contents

Abstract i

List of figures xii

List of tables xvii

List of equations xviii

List of acronyms xix

I The context 0

1 Introduction 1

1.1 Background . 1

1.2 The problem statement . 2

1.2.1 Research questions . 2

1.3 Motivation . 2

1.4 Software in safety-critical systems . 5

1.5 Software in nuclear reactors . 6

1.6 Software failures in nuclear industry . 6

1.7 Issues in software reliability quantification 7

1.8 Need for a new approach . 8

1.9 This thesis . 9

1.9.1 Assumptions and limitations . 9

1.9.2 Structure . 11

viii

Contents / ix

2 Related work 13

2.1 In formal methods . 13

2.2 In model checking . 18

2.3 In safety-critical software development, V&V 19

2.4 In software testing and test coverage . 20

2.5 In mutation testing and test adequacy 23

2.6 In software reliability growth models (SRGM) 26

2.7 In Bayesian belief network . 27

2.8 In architecture based approaches . 27

2.9 Summary . 31

3 Background information 32

3.1 Instrumentation and control in nuclear reactors 32

3.2 Case studies used in the present study 34

3.2.1 Fresh subassembly handling system 34

3.2.2 Reactor start-up system . 35

3.2.3 Steam generator tube leak detection system 35

3.2.4 Core temperature monitoring system 36

3.2.5 Radioactive gaseous effluent system 37

3.2.6 Safety grade decay heat removal system 39

II Studies on software reliability 40

4 Research methodology 41

4.1 Software reliability definition . 41

4.2 Choice of case-studies . 42

4.3 Method . 42

4.4 Experimental details . 43

4.4.1 Software under test . 43

4.4.2 Software testing . 44

4.4.3 Parallel processing . 44

Contents / x

5 Test adequacy in safety-critical software 45

5.1 Introduction . 45

5.2 Challenges . 46

5.3 Software in the case studies . 46

5.4 Test generation, verification, and coverage 48

5.4.1 Test case generation . 48

5.4.2 Verification of test cases . 50

5.4.3 Conservative test coverage . 51

5.5 Mutation testing . 52

5.5.1 Mutant properties . 52

5.5.2 Calculating mutant score . 59

5.5.3 Threat to validity . 68

5.6 Assurance of rigorous testing through test adequacy 69

5.7 Results . 69

5.8 Summary of results . 70

6 Quantification of software reliability 72

6.1 Prerequisites for the approach . 72

6.1.1 Set of test cases . 72

6.1.2 Set of mutants . 72

6.1.3 A test oracle . 73

6.1.4 Test adequacy computation . 73

6.1.5 Compiler correctness . 73

6.2 Software reliability estimation . 74

6.2.1 Approach − 1 . 74

6.2.2 Approach − 2 . 75

6.2.3 Approach − 3 . 76

6.2.3.1 Estimating fraction of shared code 76

6.2.3.2 Pseudocode of the approach 78

6.3 Theoretical results . 80

Contents / xi

6.3.1 Factors affecting the estimated reliability 81

6.3.2 Achieving target reliability . 81

6.3.3 Properties of the software . 82

6.4 Results, discussions, and critical review 83

6.5 Summary of results . 85

7 Some properties of software reliability 86

7.1 Software reliability vs. number of faults in the software 86

7.2 Software reliability vs. results of static, dynamic analysis 87

7.3 Software reliability vs. safety . 93

7.4 Summary of results . 94

8 Summary and open problems 96

8.1 Contributions . 96

8.2 Observations . 97

8.3 Open problems . 98

8.4 Conclusion . 99

III Appendices 100

A Semi-formal software specification 101

A.1 List of Drakon notations . 101

A.2 An example of semi-formal specification 103

B List of mutant operators 109

C Data for PCA of mutant characteristics 111

References 121

Figure citations 137

List of figures

1.1 Typical hardware and software failure rates over lifetime 3

1.2 The minefield analogy of software reliability (the mines represent faults

in software, and the path represent a single execution flow of the software) 4

1.3 Typical software architecture of safety applications in nuclear reactors . 10

1.4 Focus of the present study: failures caused due to software faults

(indicated by the shaded portion of the venn-diagram) 10

2.1 An example of two functionally same programs having difference in

MC/DC (calculated through code instrumentation), due to short-circuit

evaluation by the compiler. For a given set of test cases: function (a) is

likely to have lower MC/DC than function (b). 24

2.2 An example of two functionally same programs having difference in

MC/DC by manipulating the way conditions are written. For a given set

of test cases: function (a) is likely to have a lower MC/DC than function

(b). 24

2.3 An example where MC/DC and LCSAJ coverage (50%) is greater than the

statement coverage (≈ 1%). 25

2.4 An example of mutant program: (a) the original program, (b) the mutant

program (the induced fault is indicated by the red color). 25

3.1 A fission reaction . 32

3.2 A typical sodium-cooled, pool-type fast reactor 33

3.3 The flow of fresh fuel subassembly . 34

xii

List of figures / xiii

3.4 Logic diagram of the reactor startup system (ci is one of the condition to

be satisfied for the reactor startup, and sij is the jth sub-condition of ci) . 35

3.5 Steam generator in a sodium cooled fast reactor 36

3.6 Schematic of the software based Core Temperature Monitoring System

(CTMS) . 37

3.7 The schematic of Radioactive Gaseous Effluent System (GES) (Here the

symbol ./ indicates a pneumatic valve, NRV indicates a non-return valve,

FM indicates the flow meter, C1 and C2 are the compressors, and the

items controlled by the software are indicated by the blue color) 38

3.8 Schematic of one of the four independent and identical loops of safety

grade decay heat removal system . 39

4.1 Various states of a nuclear reactor . 42

5.1 Execution flow in safety-critical software 46

5.2 Test case generation using coverage information and genetic algorithms.

(The unique execution path test case selection - genetic algorithm cycle

is repeated till the required code coverage is achieved). 48

5.3 Technique to select unique execution path test cases using gcc, gcov

and md5sum. (The -abcfu arguments to gcc implies to display coverage

information of: all blocks, branch probabilities, branch counts, function

summaries, and unconditional branches. The .gcov file consist of the

coverage information in text format, where as the .gcda file consist of the

arc transition counts and other information in binary format) 49

5.4 Genetic algorithms - inspired by the genetic evolution: crossovers and

mutations . 50

5.5 Concatenated LCSAJs for the FSHS. (The green colored nodes indicate

the LCSAJ points where faults have been induced and caught; the red

colored nodes indicate otherwise) . 53

List of figures / xiv

5.6 Concatenated LCSAJs for the RSU. (The green colored nodes indicate the

LCSAJ points where faults have been induced and caught; the red colored

nodes indicate otherwise) . 54

5.7 Concatenated LCSAJs for the SGTLD. (The green colored nodes indicate

the LCSAJ points where faults have been induced and caught; the red

colored nodes indicate otherwise) . 55

5.8 Concatenated LCSAJs for the CTMS. (The green colored nodes indicate

the LCSAJ points where faults have been induced and caught; the red

colored nodes indicate otherwise) . 56

5.9 Concatenated LCSAJs for the GES. (The green colored nodes indicate the

LCSAJ points where faults have been induced and caught; the red colored

nodes indicate otherwise) . 57

5.10 Concatenated LCSAJs for the SGDHR. (The green colored nodes indicate

the LCSAJ points where faults have been induced and caught; the red

colored nodes indicate otherwise) . 58

5.11 Dynamic analysis of CTMS mutants using: Valgrind and Change in coverage 60

5.12 Static analysis of CTMS mutants using: Splint, Clang, and Cppcheck . . . 61

5.13 Principal component analysis (PCA) of static, dynamic, and coverage

analysis of mutants for: FSHS and RSU 62

5.14 Principal component analysis (PCA) of static, dynamic, and coverage

analysis of mutants for: SGTLD and CTMS 63

5.15 Principal component analysis (PCA) of static, dynamic, and coverage

analysis of mutants for: GES and SGDHR 64

5.16 Example of mutants with similar static, dynamic, and coverage

properties: (a) The original program, (b) Mutant-1, and (c) Mutant-

2 (the induced faults are indicated by red color). Both Mutant-1

and Mutant-2 share the same coordinates on the Principal Component

Analysis (PCA) plot. 65

5.17 Algorithm for detecting equivalent mutants 66

List of figures / xv

5.18 Example of equivalent mutant detection: (a) P, the original program; (b)

M, the equivalent mutant of P; (c) P
′
, the mutant of P; and, (d) M

′
,

the mutant of M. (The induced faults are indicated by red color) and

keywords by blue color) . 67

6.1 A 3-version system, where each system runs the same software, but

compiled by three different compilers . 74

6.2 Monte-Carlo method of determining the value of π 75

6.3 Example of paths in a program, where reliability of the path p2 is known

(indicated by⇒) . 75

6.4 Faults induced in path p3. (The symbol ⇒ indicates a path whose

reliability is known, and F indicates an induced fault.) 77

6.5 Contour graph showing the combination of x and y for various reliability

values (0.05-0.99), when test adequacy is 0.99. 81

6.6 Wilks criteria (Here γ indicates the probability that a single experiment

output will not fall in the failure domain (Ω)) 84

7.1 Estimated reliability vs. the defect density (in Kilo Lines of Code (KLOC))

for all the case studies. As the software under test is≈ 1 KLOC, the results

for defect density < 1 Defects/KLOC cannot be plotted. (The upper and

lower bounds indicate the ± 1σ limit, and the software reliability is in the

range [0,1]) . 88

7.2 Estimated reliability vs. the number of induced faults − for FSH and RSU

(The upper and lower bounds indicate the ± 1σ limit, and the software

reliability is in the range [0,1]) . 89

7.3 Estimated reliability vs. the number of induced faults − for SGTLD and

CTMS (The upper and lower bounds indicate the ± 1σ limit, and the

software reliability is in the range [0,1]) 90

7.4 Estimated reliability vs. the number of induced faults − for GES and

SGDHR (The upper and lower bounds indicate the ± 1σ limit, and the

software reliability is in the range [0,1]) 91

List of figures / xvi

7.5 Estimated reliability vs. the number of warnings found during static

analysis for the all case studies . 92

7.6 Estimated reliability vs. the number of errors found at dynamic analysis

for the all case studies . 92

7.7 Estimated reliability vs. the safety indicator, for all the case studies . . . 95

A.1 An example of a function "add", returning the sum of its parameters: A

and B . 101

A.2 A function call . 101

A.3 Inline and standalone comments . 101

A.4 Control flow: (a) decision box, (b) switch case 102

A.5 An example of branches. The order of execution is Task 1,2,3 102

A.6 Map and filter using list comprehension: (a) Map and (b) Filter 103

List of tables

1.1 Worldwide subsystem failures by decade in launch vehicles 1

2.1 Summary of the related work - I . 29

2.2 Summary of the related work - II . 30

4.1 Case studies chosen in the present study 42

5.1 Results of the equivalent mutant detection algorithm 68

5.2 Test adequacy achieved in case studies 70

B.1 List of mutant operators used in mutation testing - I 109

B.2 List of mutant operators used in mutation testing - II 110

C.1 Static analysis of FSHS mutants . 111

C.2 Dynamic analysis of FSHS mutants . 112

C.3 Static analysis of RSU mutants . 113

C.4 Dynamic analysis of RSU mutants . 114

C.5 Static analysis of SGTLD mutants . 115

C.6 Dynamic analysis of SGTLD mutants . 116

C.7 Static analysis of CTMS mutants . 117

C.8 Dynamic analysis of CTMS mutants . 118

C.9 Static analysis of GES mutants . 119

C.10 Dynamic analysis of GES mutants . 119

C.11 Static analysis of SGDHR mutants . 120

C.12 Dynamic analysis of SGDHR mutants . 120

xvii

List of equations

2.1 Mutation score . 23

5.1 Conservative test coverage . 51

5.2 Weighted average of conservative test coverages 69

5.3 Weightage given to each function in a program 69

5.4 Test adequacy in safety-critical software 69

6.1 Software reliability, when model is a true test oracle 74

6.2 Quick and approximate software reliability estimate, when model is not a

true test oracle . 76

6.3 Software reliability when model is not a true test oracle 80

6.4 Failure probability of software (without considering confidence level) when

the estimated reliability = 1 . 83

7.1 Safety indicator . 93

7.2 Weighted safety vector for a program . 93

7.3 Angle between two vectors . 94

xviii

List of acronyms

BBN Bayesian Belief Network

CSRDM Control and Safety Rod Drive Mechanism

CTMS Core Temperature Monitoring System

DSLs Domain Specific Languages

DSRDM Diversified Safety Rod Drive Mechanism

FSEP Fresh Sub-assembly Entry Port

FSHS Fresh Sub-assembly Handling System

FSPF Fresh Sub-assembly Preheating Facility

FSRF Fresh Sub-assembly Receiving Facility

FSU Fuel handling Startup system

GES Radioactive Gaseous Effluent System

IAEA International Atomic Energy Agency

IEC International Electro-technical Commission

KLOC Kilo Lines of Code

LCSAJ Linear Code Sequence And Jump

MC/DC Modified Condition/Decision Coverage

MD5 Message Digest 5

xix

List of acronyms / xx

MISRA Motor Industry Software Reliability Association

NNS Non-Nuclear Safety

NPPs Nuclear Power Plants

PCA Principal Component Analysis

PFBR Prototype Fast Breeder Reactor

PFD Probability of Failure on Demand

PSA Probabilistic Safety Assessment

QSRM Quantitative Software Reliability Method

RSU Reactor Startup System

SC Safety Critical

SCRAM Safety Control Rod Axe Man

SGDHR Safety Grade Decay Heat Removal system

SGTLD Steam Generator Tube Leak Detection system

SIL Safety and Integrity Level

SR Safety Related

SRGMs Software Reliability Growth Models

TMR Triple Modular Redundancy

VDM Vienna Development Method

Part I

The context

1
Introduction

1.1 Background

Safety-critical systems are: "systems whose failure could result in loss of life, significant

property damage, or damage to the environment" [1]. Software based systems are

replacing pure hardware based systems for safety operations in areas such as: aerospace,

automotive, medical, nuclear, etc. This is due to the advantages software based systems

offer in terms of functionality, cost, flexibility, maintainability, reusability, etc.

However, the increase in the use of software for critical operations has increased

the likelihood of failures occurring due to software faults. For example: an analysis of

failures in launch vehicles worldwide shows such a trend (Table 1.1 [2] as cited by [3]).

Subsystem 1980s 1990s 2000s

Propulsion 42 % 38 % 54 %
Guidance and navigation 6 % 16 % 4 %
Electrical 6 % 8 % 8 %
Operational ordnance 2 % 8 % 0 %
Software and computing 0 % 8 % 21 %
Structures 4 % 6 % 0 %
Pneumatics and hydraulics 4 % 2 % 0 %
Unknown 37 % 16 % 13 %

Table 1.1: Worldwide subsystem failures by decade in launch vehicles

This trend is a concern as software failures are usually mistakes in design which are

often difficult to visualize, classify, detect, and debug [4]. Also, as software in future

safety-critical systems are likely to be more common and powerful, it is necessary to

study the dynamics behind building safe and reliable software.

1

1. Introduction / 2

1.2 The problem statement

Nuclear Power Plants (NPPs) are replacing analog equipment with computer based

systems for their safety functions such as: reactor start-up, fuel handling, discordance

supervision, control rod handling, emergency shutdown, decay heat removal,

radioactive waste management, etc.

As software failures in critical systems could be life threatening and catastrophic

[5–14]; the increase in software based controls for safety operations demand for a

systematic evaluation of software reliability.

1.2.1 Research questions

For software in safety-critical system:

1. How can the rigor in software testing be quantified ?

2. What is its probability of failure-free operation ? (i.e. the software reliability)

3. What factors are likely to affect the software reliability ?

4. How can the software reliability be improved to meet target reliability ?

5. What is the relationship between software reliability and safety ?

1.3 Motivation

Software reliability is one of the main attributes of software quality, and is popularly

defined as:

1. " The probability of failure-free software operations for a specified period of time in a

specified environment" [15].

2. "The reliability of a program P is the probability of its successful execution on a

randomly selected element from its input domain" [16].

The first definition is made compatible with the hardware reliability definition; thus,

making it possible to estimate the overall system reliability [17]. However, the fact

1. Introduction / 3

Figure 1.1: Typical hardware and software failure rates over lifetime

that the failures in software are mainly caused due to its design faults, and not due to

its wearing off (i.e. software failures are not direct function of time), makes software

and hardware reliability fundamentally different (Figure 1.1). Thus, the definition of

software reliability with respect to time is arguable. The second definition, however is

independent of time, and is used as the basis in the present study.

An interesting analogy of software reliability called the minefield analogy [18],

questions whether software failures are probabilistic in nature. The analogy treats

the input space of a program as a field, with hidden/unexplored mines; where, mines

represent the faults in software, and the path represents software execution flow/path

(Figure 1.2 on the next page). As the result of each run/path is deterministic in nature,

the software failure must also be deterministic. However, the probabilistic nature

of software reliability is due to its operational profile, and the difficulty in detecting

1. Introduction / 4

Figure 1.2: The minefield analogy of software reliability (the mines represent faults in software,
and the path represent a single execution flow of the software)

infeasible paths in the software.

Even before software reliability was formally defined, classical/hardware reliability

was a well established field. Hence, most of the software reliability modeling and

prediction techniques were influenced by hardware reliability modeling techniques.

Unfortunately, such techniques have assumptions and limitations [19–21], which are

questionable for safety and mission critical software applications. For example:

1. There are fixed number of faults in the software being tested.

2. Whenever a failure is found, it is removed instantaneously, without inducing a

new fault.

3. Each fault has the same contribution to the unreliability of the software; and

software with fewer faults is more reliable than the one with more faults.

4. The probability of two or more software failures occurring simultaneously is

negligible.

5. Enough and accurate software failure data is available for analysis.

6. The execution time between failures is distributed in a known fashion.

1. Introduction / 5

7. The hazard rate for a single fault is constant.

8. Tests conducted represent the operational profile.

Assumptions, limitations, and applicability of defect prediction models have been

well discussed in critical reviews [19–21] and experiments [22]. Moreover, choosing

the right model suiting particular situation/software is also considered a complex task

[23, 24]. Also, some of the models have been reported to be less useful in certain

development methodologies such as the agile approach to software development [25].

1.4 Software in safety-critical systems

Most of the existing software reliability estimation techniques depend upon failure

statistics to predict reliability. These techniques require enough and accurate failure data

for analysis. Hence, unless enough software failures have been observed, the software

reliability cannot be predicted accurately.

But, software built for safety-critical applications are different from business-critical

or general purpose systems. Generally, safety systems are: (i) smaller and focused,

(ii) rugged and have fault tolerant features, (iii) designed with defense in depth, (iv)

Written in safe subset of programming languages, (v) expected to have lower failure

rates, (vi) meant to fail in fail-safe mode, and (vii) not expected to rely on human

judgment or intervention to initiate safety action.

Given the rigorous nature of safety-critical software development, a fundamental

question may be asked:

"Whether a software system having experienced lot of failures, fit to be used in

safety-critical system to begin with" ?

Too many software failures indicate that something is fundamentally wrong; and raises

doubts on the development and verification processes being followed. Hence, the

confidence on the reliability estimates based on historical failure rates for safety-critical

systems would be low.

1. Introduction / 6

1.5 Software in nuclear reactors

Based on safety, systems in a nuclear reactor may be classified into three categories [26]:

1. Safety Critical (SC):

Systems important to safety, provided to assure that under anticipated operational

occurrences and accident conditions, the safe shutdown of the reactor followed by

heat removal from the core and containment of any radioactivity is satisfactorily

achieved.

2. Safety Related (SR):

These are systems important to safety, which are not included in safety-critical

systems, but are required for the normal functioning of the safety systems in the

reactor.

3. Non-Nuclear Safety (NNS):

Systems which do not perform any nuclear safety function.

For each category, the International Atomic Energy Agency (IAEA) as well as the

atomic energy regulator in the respective countries issue guidelines [27, 28] on best

practices in software requirement analysis, defense in depth design, safe programming

practices, verification and validation processes, etc. The regulators expect a formal

systematic review of the software and its associated hardware using requirement

specifications and independent reviews.

1.6 Software failures in nuclear industry

Even though the nuclear industry is well guided and regulated, it is not immune to

software failures. Documented software failures in the nuclear industry include:

1. Canada’s Therac-25 radiation therapy machine delivered high radiation doses to

patients [5].

2. Files become inaccessible to the nuclear accountants using nuclear material

tracking software at Kurchatov institute, Russia [29].

1. Introduction / 7

3. Slammer worm disabled safety parameter display system for 5 hours at Davis-Besse

nuclear power station [30].

4. Computer resets the control system after software patching and reboot at Edwin I.

Hatch nuclear power plant [31].

5. Stuxnet worm infects nuclear plants in Iran running Supervisory Control and Data

Acquisition (SCADA) systems controlled by Siemens software [32].

and several others [33]. The main reasons for the failures include: improper/imprecise

requirement specification, insufficient testing, use of untested Commercial Off the Shelf

Software (COTS), incorrect reuse of older software, vulnerabilities in the software, etc.

Hence, an ideal software reliability quantification approach must take such factors in to

consideration.

1.7 Issues in software reliability quantification

Difficulty in quantifying software reliability is due to the factors such as: software

complexity, difficulty in identifying suitable metrics, difficulty in exhaustive testing,

difficulty in quantifying effectiveness of test cases, etc. Also, there are difficulties

in implementing high level guidance [34] and establishing a working consensus.

Deterministic analysis such as hazard analysis and formal methods are generalization

of the design basis accident methodology used in the nuclear industry. However,

probabilistic analysis is considered more appropriate as software faults are by definition

design faults.

As safety systems in a nuclear power plant are categorized based on their importance

to safety; for computer based systems, the International Electro-technical Commission

(IEC) standards give requirements in the form of Safety and Integrity Level (SIL) [35].

SIL is specified in the form of a number from one to four based on the probability of

failure. SIL-1 represents the lowest safety integrity level with target average Probability

of Failure on Demand (PFD) between 10−2 and 10−1, whereas SIL-4 is the highest

with PFD between 10−5 and 10−4. Common safety functions in NPPs are governed

1. Introduction / 8

by defense in depth principles such as: reactivity control, maintenance of fuel integrity,

control of pressure boundary, continuation of core cooling, and prevention of release of

radioactivity. In view of the inherent complexity in such control software, it is difficult to

assess the failure probability of software and quantify the influence of its safety function

on core melt down frequency.

1.8 Need for a new approach

As the software developed for critical systems are different from traditional software

systems; it is unclear if the traditional Software Reliability Growth Models (SRGMs) are

suitable for critical applications. Studies such as [36, 37] suggest that the amount of

time required in testing for demonstrating ultra-high reliability is in-feasible. Software

testing with large number of test cases without analyzing the quality/effectiveness of

test cases, cannot give confidence on the reliability estimate. The current methods to

quantify the quality of test cases include: test coverage and mutation based testing [38].

However, as Littlewood quotes [39]: "most software testing is unlike operational use, and

any reliability predictions based on this kind of classical testing will not give an accurate

picture of operational reliability". Also, the principle findings of a U.S. Nuclear Regulatory

Commission (NRC) report quotes [40]:

1. "Most of the existing quantitative software reliability methods were not developed

specifically for supporting quantification of software failure rates and demand failure

probabilities to be used in reliability models of digital systems".

2. "All methods are based on assumed empirical formulas that are not applicable in all

situations."

Some qualitative improvement in software reliability may be achieved with N-

version programming [41]; however, it is costly and its benefits are arguable [42].

Hence, the current licensing procedure for computer based systems in nuclear reactors is

based on deterministic criteria. For a risk-informed regulation, a procedure for software

reliability estimation is not yet been satisfactorily developed [43,44].

1. Introduction / 9

An ideal way to demonstrate that the software meets a required reliability is through

formal verification. Formal verification is a method of proving certain properties

in the designed algorithm, with respect to its requirement specification written in

mathematical language/notation. Approaches to formal verification include formal

proof and model checking. Formal proof is a finite sequence of steps which proves

or disproves a certain property of the software, whereas model checking achieves the

same through exhaustive search of the state space of the model. Unfortunately, it is not

always feasible to ensure complete formal verification of software due to the difficulties

involved such as state space explosion and difficulties in practical implementation

of formal methods [45]. Also, a major assumption in formal verification is that

the requirements specification captures all the desired properties correctly. If this

assumption is violated, the formal verification becomes invalid.

Hence, reliability estimates based on software testing has been adopted by many

for decades. Repeated failure free execution of the software provides a certain level of

confidence in the reliability estimate. However, it is well known that software testing

can only indicate the presence of faults and not its absence.

Some of the existing defect prediction models predict the number of faults present

in software based on the historical failure trend. However, they fail to pin point the

remaining defects. For real world safety applications, predicting the reliability alone is

not sufficient; hence, an ideal reliability estimation approach must also provide a way

to improve the reliability. Hence, there is a need for a systematic and robust software

reliability estimation method suitable for critical applications related to safety.

1.9 This thesis

1.9.1 Assumptions and limitations

1. Software for safety systems may be divided into five basic modules (Figure 1.3 on

the next page):

(a) A hardware-interface module, which can take inputs from sensors (e.g. for

1. Introduction / 10

Hardware interface

**

Network interface

tt
Systems’ core module

))

44jj

tt
Diagnostic routines

44

User interface

ii

Figure 1.3: Typical software architecture of safety applications in nuclear reactors

temperature, pressure, flow etc.) and send outputs to final control elements

such as: motors, relays, blowers, heaters, etc.

(b) A user-interface module, which interacts with the user.

(c) A network-interface module, which can share soft inputs/outputs with other

connected systems.

(d) A diagnostic module which checks the state of the system at regular intervals.

(e) The main/core module which performs the systems’ intended function.

The main/core module of various safety systems are used as case studies in the

present study, for which source code is available.

2. The focus of the thesis is on pure software failures (indicated by the shaded portion

in - Figure 1.4), and not on system failures arising due to hardware or hardware-

software interaction.

Software failuresHardware failures

Figure 1.4: Focus of the present study: failures caused due to software faults (indicated by the
shaded portion of the venn-diagram)

1. Introduction / 11

3. The software is written in portable C-programming language, adhering to Motor

Industry Software Reliability Association (MISRA) standards.

4. The software is single-threaded and runs on bare hardware without any operating

system support.

5. Software is testable, i.e. it has a test oracle, using which large number of test cases

can be verified automatically.

1.9.2 Structure

The thesis is structured as follows:

• Part - I (The context)

– Chapter-1

* Outlines the context, motivation, goals, and contributions of this thesis.

– Chapter-2

* Reviews related work in formal methods, model checking, software

testing, software reliability estimation methods, etc.

– Chapter-3

* Provides background information on the case-studies used in the present

study.

• Part - II (Studies on software reliability)

– Chapter-4

* Describes the research methodology being followed.

– Chapter-5

* Proposes an approach to determine the test adequacy in safety-critical

software.

1. Introduction / 12

– Chapter-6

* Proposes an approach to quantify the software reliability in safety-critical

systems.

– Chapter-7

* Presents some empirical results on properties of software reliability in

safety-critical systems.

– Chapter-8

* Summarizes the thesis, and lists out some of the open problems

2
Related work

2.1 In formal methods

Natural languages such as English have been widely used in the requirement

specification of software, popularly known as the Software Requirement Specification

(SRS) document. The advantages of using natural languages include: (i) better

understand-ability by large and diverse audiences, (ii) search-able using keywords,

and (iii) ability to specify large projects. However, natural languages are easily prone

to ambiguity and imprecision. These problems were very early recognized and well

discussed [46].

Experience [47–50] indicates that the errors in requirement specification is the

major cause for software failures, and are the costliest to fix. In this regard, formal

methods are being adopted in critical areas to prove that the software meets its

functional requirements [51–55]. Formal methods are techniques based on mathematics

to prove/disprove certain properties in software or specification.

As a precise and clear specification is the first step in developing reliable and

fault free software; the use of formal methods with sound mathematical base and

notations seemed to be the right way to solve these problems. Hence, a lot of

research has been done in developing formal specification languages. Various types

of languages/techniques include:

1. Algebraic specification languages: Algebraic specification is a formal process

of writing specifications in mathematical structures and functions. Vienna

Development Method (VDM) [56], Z (zed) notation [57] and B-Method [58] are

13

2. Related work / 14

the most popular algebraic specification languages both in academia as well as in

industries [59,60]. A detailed description and comparison of various specification

languages can be found in [61]. Applications and features of VDM and Z are well

discussed in [62]. Also, works such as [52] highlight the experiences with formal

specification languages and formal methods in general.

2. Object oriented modeling techniques: Due to rise in popularity of object-oriented

paradigm, and limitations of Z and VDM to model object-oriented systems;

VDM++ [63] and Object-Z [64], the object-oriented extensions for VDM and Z

respectively were released. But, the Unified modeling language (UML) became

the most widely used notation for object-oriented modeling. However, UML does

not support specification of constraints in the model. As constraints make a model

precise and complete, languages such as: Object Constraint Language (OCL) [65],

Java Modeling Language (JML) [66], and Spec# [67] were developed. OCL is

an Object Management Group (OMG) standard language, used to specify pre-

conditions, post-conditions and invariants in UML diagrams. Whereas JML is a

behavioral interface specification language developed to specify Java classes and

interfaces. JML specifications are written as Java annotation comments in the

source files, and tools such as jmlc [68] compile JML annotated Java files with run-

time assertion checks. Spec# is a formal language for API contracts; it is a super-

set of C# with constructs for non-null type variables, class contracts and method

contracts like pre-conditions and post-conditions. It leverages on the popular C#

programming language and .NET framework; for easier adoption by programmers.

3. Special purpose languages: Eiffel [69], originally developed by Eiffel Software is an

object-oriented programming language which has introduced and popularized the

set of principles such as: command-query separation, design by contract, open-

closed principle, option-operand separation, single-choice principle, and uniform-

access principle. Some of these principles were later adopted by many other

specification and programming languages. The goal of Eiffel programming method

is to enable programmers to create reliable, reusable, and correct software. The

2. Related work / 15

Prototype verification system (PVS) [70], developed at the Computer Science

Laboratory of SRI International, California, USA. is a framework for writing formal

logical specifications and constructing proofs. PVS has been successfully used in

specification and verification of various critical applications [71] in organizations

such as NASA for Cassini aircraft [72] and Space Shuttle [73].

4. Functional programming languages: Even though general purpose programming

languages offer a lot of flexibility to the specifier, they are not suitable to be used

as a formal specification language. Only pure functional programming languages

such as Lisp [74] and Haskell [75]; which offer referential transparency [76], can

be considered suitable for the purpose. For example: Haskell has been used to

formally verify a micro-kernel seL4 [77].

5. Domain Specific Languages (DSLs): Domain-Specific Languages [78] are special

purpose languages that allow specification or development of applications for a

specific domain. Unlike general-purpose programming languages, DSLs contain

fewer programming constructs, and are easier to learn. As they are used by

people well aware of the domain, writing and reviewing specification is also easier.

Also, DSLs with visual programming interfaces helps domain experts with little/no

programming background to write specification. However, due to their fewer

programming constructs, DSLs lack flexibility, and may require frequent additions

or modifications as the domain evolves/changes.

Critical review of specification languages

Formal methods ensure systematic software development by ensuring correctness at

early stages of software development. Formal methods when applied correctly have

been found to be successful in certain applications [60, 72, 79–81]. However, formal

methods have not been widely adopted by software engineering practitioners due to the

following reasons:

1. An expert is required to get started, and should be always available: Successful use of

formal methods requires selection of suitable notation, right tools and fair amount

2. Related work / 16

of discrete mathematical skills. Hence, a team of experts is required to get started

[45].

2. No specification language is suitable for all kinds of systems: There are too many

specification languages; each one suitable for a particular kind of application.

For example: Z and VDM are well suited for structured systems, Object-Z and

VDM++ for object-oriented modeling, and Lustre [82] for modeling reactive

systems. Also, as no one specification language can be used to specify all aspects

of a large system, one may have to mix two or more specification languages to

achieve desired results. In such cases, the difference in syntax among specification

languages adds up to the complexity [83].

3. Formal specification languages have poor readability: Early formal specification

languages like Z are heavily based on mathematical notations, and use lot

of non-ASCII symbols in their syntax, which require special tools for writing

specification. These languages seem to have ignored readability and usability

to achieve precision and expressiveness. Due to their complex syntax, testers

may find it difficult to write test cases from specification. Also, most of the

programmers are not well trained in these notations, which could easily lead

to incorrect implementation and imprecise verification and validation (V&V).

Although, automatic code generators which generate target code from the

specification, try to address this problem. However, testing is usually performed

at the model level, and unless the generated code is clean and understandable

programs; it is difficult to test and debug the code.

4. Once written, they are often difficult to maintain: It is a well known fact that:

in real-world scenarios, software requirements and specifications are not frozen.

Software may require frequent additions, modifications, and deletions to meet

new user demands and comply with new standards and regulations. Once written,

the complex mathematical notations are difficult to modify, and requires an expert

to do the work. Also, other concerned members like managers, testers, certifiers,

and end users may not be mathematically inclined; and may find it difficult to

2. Related work / 17

understand, verify, and review the specification. Thus, these languages may not

be suitable for large and complex applications, where requirements may change

frequently.

5. High cost is required in training the staff: Training each and every member on

formal methods takes a lot of time and money due to scarcity of experts in these

areas; making it very difficult for small and medium sized organizations, as well

as projects with tight budget and time constraints to apply formal specifications

successfully.

6. Formal methods usually focus on functional specification: Most of the formal

specification languages focus on functional specification, but not well on non-

functional specifications such as: performance, security, maintainability, testability,

etc.

A study in nuclear software development [84,85] conducted by University of Virginia on

staff at University of Virginia reactor (UVAR); consisting of nuclear engineers, computer

scientists, and developers; revealed similar barriers in practical implementation of

formal methods. Improvements in tools such as graphical formal notations such as

Safety Critical Application Development Environment (SCADE) [86] attempts to make

specification simpler and readable, and have been used in various safety and mission

critical applications [87–92]. However, formal methods in general have the following

limitations:

1. Formal methods assume accurate transformation of formal specification or the

model to implementation code.

2. Formal methods do not have information about the operating environment such

as: underlying hardware, operating system, network configurations, etc.

3. Results of formal methods can be negated by faults in compilers.

4. Proving large, complex, or non-linear properties using formal methods is difficult,

time consuming, and sometimes impractical.

2. Related work / 18

5. Formal methods cannot indicate if enough properties have been proven.

6. The result of formal methods is qualitative in nature, and thus cannot be directly

used to quantify software reliability (i.e. formal method are not Quantitative

Software Reliability Method (QSRM)).

2.2 In model checking

Model checking [93, 94] refers to exhaustively checking if a given model of a system

satisfies a given property. The system is usually modeled in the form of a finite-state

machine, and is checked if the given property is valid for all states and transitions of

the model. If the given property fails, counterexamples can be generated. This model

also enables automatic test case generation for the system. Further research in model

checking through symbolic model checking using Binary Decision Diagrams (BDDs)

[95] and satisfiability (SAT) solvers [96] has improved the speed of model checking.

However, these techniques may not be scalable for large and complex systems.

Bounded model checking (BMC) [97] is an efficient technique to verify the given

property in a bound of k steps. The main advantage of BMC is that it does not suffer

from state space explosion problem, hence is likely to be a practical technique; and work

such as [98] highlights the benefits of BMC in an industrial setting. Systematic survey

on model checking and its associated tools can be found in [99,100].

Critical review of model checking

Model checking has been used successfully in practice [101–105] to prove safety

and liveliness properties. However, the model checking can only check finite state

systems. Also, creating a good mathematical model for a large and complex system

is a challenging task [106]. Research on automatic extraction of states to build a model

from a given program is in progress [107].

As exhaustive model checking may not scale well for large problems due to the state

space explosion problem; Bounded model checkers (BMC) were proposed, which can

2. Related work / 19

check a given model without the state space explosion problem. But, due to the k

bound, completeness cannot be achieved.

2.3 In safety-critical software development, V&V

Software in safety systems are built with utmost care, and are written in safe subset of

programming languages such as: MISRA C/C++ [108,109], JSF++ [110], SPARK Ada

[80], etc.

Also, the tools used for testing safety related software are expected to be dependable.

Earlier works such as [111] has reviewed and evaluated software correctness and

security assessment tools under various categories such as: static analysis, source code

fault injection, dynamic analysis, binary fault injection, byte-code analysis, etc. Among

them, static source code analysis tools have been proven to be the most mature, as they

are found useful in multiple phases of the software development life cycle. Source code

fault injection tools provide mechanism through which source code can be instrumented

to induce the code to follow control paths that would be otherwise difficult to test. A

detailed analysis on benefits and drawbacks of each of the tools under the respective

categories has also been described [111].

Safety-critical industries often receive guidelines from their regulators on software

verification and validation processes (e.g. ISO-26262 [112] for automotive, DO-178B

[113] for avionics, EN-50128 [114] for railways, IEC-61508 [115] for nuclear power

plants, etc.). Compliance with specific safety standards and guidelines is mandatory to

ensure the quality of software used in safety-critical industries.

Apart from following the respective standards and procedures, the safety critical

software undergoes rigorous testing. International standards limit the rate for

catastrophic failures to be less than 10−8 failures per hour for continuous control systems

and less than 10−4 failures per demand for protection systems such as emergency

shutdown systems [116].

2. Related work / 20

Critical review of safety-critical software development and V&V techniques

Safe subsets of programming languages reduces the likely hood of dangerous faults in

software [117], hence are recommended for building safety applications. Also, popular

safe subsets such as MISRA-C/C++ are regularly reviewed and updated. However, no

specific safe-subset standards exist for nuclear applications.

Good development practices, reviews and independent V&V helps in building

reliable and safe software. However, results of reviews and V&V are deterministic

and are usually check-list based, hence cannot be directly used to quantify software

reliability.

2.4 In software testing and test coverage

Testing is a process of giving a set of inputs to the software under test and match its

output with the expected output. Software in safety and mission critical applications

often require proof that they have been thoroughly tested. Hence, programmers and

testers are expected to write good test cases [118] which can verify the behavior of the

entire system. However, as exhaustive testing is impractical in real world applications,

the amount of testing is quantified through test coverage.

In general purpose applications, statement coverage and branch are the two popular

test coverage criteria. For safety applications, Modified Condition/Decision Coverage

(MC/DC) [119] and Linear Code Sequence And Jump (LCSAJ) [120,121] coverage are

also recommended.

1. The MC/DC criterion is satisfied only when:

(a) Every point of entry and exit in the program has been invoked at least once.

(b) Every condition in a decision has taken all possible outcomes at least once.

(c) Every decision in the program has taken all possible outcomes at least once,

and each condition in a decision has been shown to independently affect the

outcomes of that decision. A condition is shown to independently affect the

2. Related work / 21

outcomes of a decision by varying just that condition while holding all other

possible conditions fixed [119].

2. LCSAJ (aka. jump-to-jump path/JJ-path) coverage criterion is satisfied when all

the LCSAJs are executed at least once. LCSAJ is a linear sequence consisting of

three linear jumps/points [120]: (i) the start point, (ii) the end point, and (iii) the

jump-to point, which marks the end of the linear sequence/flow.

Achieving 100% MC/DC and LCSAJ criteria often requires large number of test cases,

for which automatic test case generation may be used. Random testing [122, 123]

and model based testing [124] are the two popular techniques to generate test cases

automatically.

Random testing though is the quickest and easiest test case generation technique,

it generates redundant test cases; and may not satisfy specific requirements. As the

main goal of testing is to generate a test case which has maximum probability of finding

an error; techniques involving Adaptive random testing (ART) [125], directed random

testing [126, 127], and genetic algorithms [128] have been proposed [129, 130]. ART

attempts to spread inputs evenly over the input domain using distance calculations,

where as directed random testing combines symbolic execution and test coverage

information of the current input (test case) to generate the next input (test case). On the

other hand, genetic algorithm is a search technique which uses an initial set of random

test cases as the initial population, and mimics natural evolution by producing better

test-cases based on a fitness function.

Model based test case generation requires building a model of the system, and a test

case generation criteria; using which, test cases are generated for the actual system.

The main advantage of this approach is that it forces the designers to create a precise

behavior of the system at the requirement stage itself, thus ensuring quality at the early

stages of development. After a model has been validated, automatic code generators

may be used to generate the implementation code [86].

As large number of test cases may require a lot of time to execute (especially during

regression testing), varieties of ways to reduce test cases and to prioritize them have

2. Related work / 22

been proposed [131–134]. Some studies [135, 136] indicate that test case reduction by

keeping the test coverage constant does not have significant effect on the effectiveness

of the test suite. A systematic survey on test case minimization and prioritization may

be found in [137].

Another interesting testing technique is fuzz-testing [138,139]. Fuzz-testing involves

giving random and malformed/invalid inputs to the program to analyze its behavior.

The technique is usually automated; and is effective in detecting security faults, crashes

(including assertion failures), and memory leaks.

Critical review of software testing and test coverage

Testing is an important part of V&V of a system, and any safety related software must

be rigorously tested. However, exhaustive software testing in real world applications

is usually impractical. Also, the number of execution paths a program may take is

exponential to the number of conditions (branches), and can be infinite if the program

contains loops. Hence, it is also impractical to test all paths in large and complex

applications. Thus, as Dijkstra quotes [140]: “program testing can be a very effective

way to show the presence of faults, but is hopelessly inadequate for showing their absence”.

The MC/DC and LCSAJ coverage are very effective coverage metrics and are used

in various safety-critical applications. Unfortunately, generating 100% LCSAJ can be

difficult for large programs. Hence, techniques such as genetic algorithms and model

based testing are used for generating large number of test cases. However, genetic

algorithms have two issues: (i) how to generate the initial population/test-cases? (ii)

how to choose two parents to generate new test cases? Also, large number of test cases

cannot be verified manually, hence use of automatic test oracles is a must [141, 142].

However, it is challenging to build a true test oracle.

Control coverage of the code is popularly used to quantify the amount of testing

carried out. However, single control coverage criteria alone such as 100% MC/DC could

be misleading in certain situations (Figures 2.1 to 2.3 on pages 24–25), and may not be

sufficient to ensure the test adequacy in safety-critical software [143,144].

Fuzz testing is an effective testing technique to detect memory leaks, buffer

2. Related work / 23

overflows, null pointer dereference, uncontrolled format string issues, denial of service,

assertion failures, out of memory faults, etc. Traditionally, fuzz testing has depended on

random number generation for generating inputs; but, combining fuzzing and symbolic

execution has also been reported to be very effective and scaleable for production use

[145,146]. However, fuzz testing is not a QSRM, and cannot be directly used to quantify

software reliability.

2.5 In mutation testing and test adequacy

Mutation testing [147, 148] is a fault injection technique, where realistic faults are

induced intentionally into the source code. The fault induced program is known as

a mutant (Figure 2.4 on page 25), and the result of mutation testing is the mutation

score, defined as:

Mutation score =
K

G− E
(2.1)

where: K is the number of mutants killed by the test cases (i.e. at least one of the

test cases has failed while executing the mutant), G is the number of mutants generated

and E is the number of equivalent mutants. The value of mutation score is in range

[0,1]; and it indicates effectiveness of the test cases to catch faults (higher the mutation

score, higher is the effectiveness); and is an indication of test adequacy. Ideally, a good

set of test cases must have a mutation score = 1 (i.e. should be able to detect/kill all

the mutants).

Critical review of mutation testing and test adequacy

Mutation testing is one of the most effective techniques to determine the test adequacy.

But is considered difficult in practice, as it is computationally expensive and suffers from

the equivalent mutants problem. Systematic reviews on mutation testing, the equivalent

mutant problem, and test adequacy may be found in [38].

While calculating the result of mutation testing (i.e. the mutant score −

Equation (2.1)), if few of the mutants could not be killed (i.e. K < G), then: unless

the equivalent mutants are detected, the value of E is assumed to be 0. Thus, the

2. Related work / 24

bool function (bool a, bool b, bool c, bool d, bool e, bool f)

{

return (a && (b || c) && (d || e || f)) ;

}

(a)

bool function (bool a, bool b, bool c, bool d, bool e, bool f)

{

return ((d || e || f) && (b || c) && a) ;

}

(b)

Figure 2.1: An example of two functionally same programs having difference in MC/DC (calculated
through code instrumentation), due to short-circuit evaluation by the compiler. For a given set of
test cases: function (a) is likely to have lower MC/DC than function (b).

bool function (int a, bool b, bool c, bool d, bool e, bool f)

{

if (a == 100)

{

if (b || c)

// statement 1

if (d || e || f)

// statement 2

}

}

(a)

bool function (int a, bool b, bool c, bool d, bool e, bool f)

{

bool a_is_equal_to_100 = a == 100 ;

bool b_or_c = b ||c ;

bool d_or_e_or_f = d || e || f ;

if (a_is_equal_to_100)

{

if (b_or_c)

// statement 1

if (d_or_e_or_f)

// statement 2

}

}

(b)

Figure 2.2: An example of two functionally same programs having difference in MC/DC by
manipulating the way conditions are written. For a given set of test cases: function (a) is likely
to have a lower MC/DC than function (b).

2. Related work / 25

bool function (bool true_condition)

{

if (true_condition)

{

// 1 statement

}

else

{

// 100 statements

}

}

Figure 2.3: An example where MC/DC and LCSAJ coverage (50%) is greater than the statement
coverage (≈ 1%).

bool

can_the_car_start (bool door_is_closed , bool seat_belt_is_on)

{

if (door_is_closed && seat_belt_is_on)

return true ;

else

return false ;

}

(a)

bool

can_the_car_start (bool door_is_closed , bool seat_belt_is_on)

{

if (door_is_closed || seat_belt_is_on)

return true ;

else

return false ;

}

(b)

Figure 2.4: An example of mutant program: (a) the original program, (b) the mutant program
(the induced fault is indicated by the red color).

2. Related work / 26

mutation score will always be < 1. Automatic detection of equivalent mutant is in

general considered as an undecidable problem [149]; nevertheless, many attempts have

been made [150–153] to detect them with certain accuracy. Also, results of mutation

testing could be misleading if faults are not induced at all paths of the code.

Not much work is available on mutant characteristics, i.e. how do unkilled mutant

programs (a mutant program which when tested, gave the same results as the original

program) differ from the killed mutant programs (a mutant program which when tested,

gave at least one result different from the original program). Work such as [154]

suggests that the mutants with high coverage impact are likely to be non-equivalent,

and are likely to be killed easily.

2.6 In software reliability growth models (SRGM)

SRGMs are statistical techniques to estimate the reliability of a given system using the

past software failure data trend. Every time the software fails, it is corrected, and the

software experiences reliability growth. Thus the reliability is expected to grow as the

software matures. The failure data is expected to be accurate and correct; also, each

time the software fails it is corrected without inducing new faults.

A variety of SRGMs have been proposed and applied to various projects [17, 155–

159]. However, lot of assumptions and limitations has also been reported [19–21,40].

Critical review

SRGMs are black box techniques which can be used without understanding the design

or code of the software under test. It is particularly useful for large projects where

understanding the design or code is difficult, or the full design or source of the software

is not available. The main advantage of SRGMs is its ease of use. Once the failure data

is available, an appropriate model is selected and the failure trend can be easily plotted,

using which the reliability can be assessed or predicted.

However, as with any black box technique, the software testing methodology is adhoc

in nature, and may not be sufficient to test safety-critical software. Also, choosing a

2. Related work / 27

useful model for a given situation/software is a complex task [23,24].

2.7 In Bayesian belief network

Bayesian Belief Network (BBN) defined as [160]: "A directed acyclic graphs (DAGs) in

which the nodes represent variables of interest and the links represent informational or

causal dependencies among the variables", is considered one of the potential technique to

estimate software reliability [40,161,162] for safety-critical systems.

Building an useful BBN requires a group of experts and information from various

sources of reliability evidence such as: design documents, expert knowledge, operating

experience, testing, etc. [40, 163]. Use of BBNs in safety software in nuclear industry

has been highlighted in [164,165].

Critical review

BBN allows estimation of software reliability using existing knowledge, and displays the

relationship between variables in a graphical form. The two main advantages of BBN

are: (i) use of various kinds and sources of information to get a reliability estimate,

(ii) allows uncertainties in parameters to be taken in to account. However, the main

challenge in creating an effective BBN include : (i) collecting enough and accurate data

for newly built products, (ii) qualifying experts for BBN development, (iii) resolving

disagreements among experts.

2.8 In architecture based approaches

As more and more functionality is being added in to the software; the present software

systems are growing large and complex. Hence, software reusability and component

based software engineering is emphasized to reduce cost and V&V effort. Hence, for

large and complex systems, black box based software reliability estimation techniques

may not be appropriate. "Instead, there is a need for a white-box approach which estimates

system reliability taking into account the information about the architecture of the software

2. Related work / 28

made out of components" [166].

In architecture based models, clear knowledge of the structure of the software

and/or past experience must be available to model the reliability of each software

component and its interactions with other components. Architecture based approaches

require an expert with through knowledge in the software architecture. Architecture

based approaches can be divided in to path based and state based approaches [167].

Path based approach is one of the architecture based approaches, and involves

generating/identifying paths in the software and testing/simulating the paths to

estimate the software reliability by averaging all the path reliabilities [168]. On the

other hand, Markov models [169–173] consist of system states, possible transitions

between them, and its associated probabilities. The model calculates the system

reliability using transision probability matrix. The characteristic of markov model is:

the future behavior of the system is only dependent on the current state.

Critical review

White-box based software reliability modeling techniques such as architecture based

models allow analysis of software reliability at early stages of software development life

cycle. Two major limitations of path based approaches are: (i) difficulty in detecting

unfeasible paths, (ii) the number of paths a program may have increases exponentially

with number of conditions, and can be infinite if a program contains loops.

Markov analysis is a very useful technique in modelling time dependent failures, and

describes the failure of an item and its subsequent repair. Also, it shows the probability

of an event resulting from a sequence of sub-events. However, markov models are

usually difficult to construct for large and complex systems and suffers from state-space

explosion problem.

A systematic review of architecture based models can be found in [167,174].

2. Related work / 29

#
Te

ch
n

iq
u

e
M

aj
or

ad
va

n
ta

ge
s

G
ap

s
/

di
ffi

cu
lt

ie
s

/
di

sa
dv

an
ta

ge
s

1
Fo

rm
al

m
et

ho
ds

i)
Is

ri
go

ro
us

an
d

sy
st

em
at

ic
in

na
tu

re
.

(i
)

Is
la

bo
r

in
te

ns
iv

e,
di

ffi
cu

lt
in

pr
ac

ti
ce

fo
r

la
rg

e
pr

oj
ec

ts
.

ii)
Fo

cu
se

s
on

co
rr

ec
tn

es
s

at
th

e
ea

rl
y

(i
i)

Pr
oo

f/
Sp

ec
ifi

ca
ti

on
m

ay
al

so
co

nt
ai

n
fa

ul
ts

/e
rr

or
s.

st
ag

es
of

so
ft

w
ar

e
de

ve
lo

pm
en

t.
(i

ii)
G

en
er

al
ly

,d
oe

s
no

t
co

ns
id

er
th

e
fa

ct
or

s
as

so
ci

at
ed

iii
)

Su
pp

or
ts

au
to

m
at

ic
co

de
ge

ne
ra

ti
on

.
w

it
h

th
e

ta
rg

et
co

m
pi

le
r/

ha
rd

w
ar

e/
en

vi
ro

nm
en

t.

2
Ve

ri
fic

at
io

n
an

d
(i

)
C

an
be

pe
rf

or
m

ed
by

an
in

de
pe

nd
en

t
ag

en
cy

.
(i

)
Pr

oc
es

s
is

us
ua

lly
m

an
ua

l.
va

lid
at

io
n

(i
i)

Fo
cu

se
s

on
fu

nc
ti

on
al

co
rr

ec
tn

es
s.

(i
i)

R
es

ul
ts

ar
e

us
ua

lly
ch

ec
k-

lis
t

ba
se

d
an

d
qu

al
it

at
iv

e.

3
C

la
ss

ic
al

so
ft

w
ar

e
(i

)
R

es
ul

ts
re

fle
ct

th
e

re
al

en
vi

ro
nm

en
t.

(i
)

Ex
ha

us
ti

ve
te

st
in

g
is

im
pr

ac
ti

ca
l.

te
st

in
g

(i
i)

A
m

ou
nt

of
te

st
in

g
is

qu
an

ti
fia

bl
e

th
ro

ug
h

(i
i)

C
an

no
t

pr
ov

e
ab

se
nc

e
of

fa
ul

ts
.

te
st

co
ve

ra
ge

.

4
M

ut
at

io
n

ba
se

d
(i

)
A

n
ef

fe
ct

iv
e

m
et

ho
d

to
as

se
ss

th
e

qu
al

it
y

of
te

st
ca

se
s.

(i
)

Is
co

m
pu

ta
ti

on
al

ly
ex

pe
ns

iv
e.

te
st

in
g

(i
i)

It
s

re
su

lt
(t

he
m

ut
at

io
n

sc
or

e)
is

an
in

di
ca

ti
on

(i
i)

Su
ff

er
s

fr
om

th
e

eq
ui

va
le

nt
m

ut
an

ts
pr

ob
le

m
.

of
te

st
ad

eq
ua

cy
.

5
M

od
el

ch
ec

ki
ng

(i
)

Ex
ha

us
ti

ve
ly

se
ar

ch
es

fo
r

al
ln

od
es

an
d

tr
an

si
ti

on
s.

(i
)

Is
co

m
pu

ta
ti

on
al

ly
ex

pe
ns

iv
e.

(i
i)

A
ut

om
at

ic
te

st
ca

se
s

ca
n

be
ge

ne
ra

te
d.

(i
i)

R
eq

ui
re

s
m

od
el

to
be

re
pr

es
en

te
d

in
th

e
fo

rm
of

a
(i

ii)
C

an
ge

ne
ra

te
co

un
te

r
ex

am
pl

es
fo

r
fa

ile
d

pr
op

er
ti

es
.

st
at

e
di

ag
ra

m
.

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
th

e
re

la
te

d
w

or
k

-I

2. Related work / 30

#
Te

ch
n

iq
u

e
M

aj
or

ad
va

n
ta

ge
s

G
ap

s
/

di
ffi

cu
lt

ie
s

/
di

sa
dv

an
ta

ge
s

6
Fu

zz
te

st
in

g
(i

)
Ef

fe
ct

iv
e

in
de

te
ct

in
g

se
cu

ri
ty

/s
af

et
y

re
la

te
d

fa
ul

ts
.

(i
)

R
el

ie
s

he
av

ily
on

ra
nd

om
nu

m
be

rs
.

(i
i)

A
tt

em
pt

s
to

de
te

ct
fa

ul
ts

/c
ra

sh
es

w
hi

ch
ar

e
of

te
n

di
ffi

cu
lt

in
m

an
ua

lt
es

ti
ng

.

7
R

el
ia

bi
lit

y
(i

)
Is

bl
ac

k-
bo

x
ba

se
d

ap
pr

oa
ch

,a
nd

is
in

de
pe

nd
en

t
(i

)
R

eq
ui

re
s

en
ou

gh
an

d
ac

cu
ra

te
fa

ilu
re

da
ta

.
gr

ow
th

m
od

el
s

of
th

e
so

ur
ce

co
de

/a
rc

hi
te

ct
ur

e
of

th
e

sy
st

em
.

(i
i)

B
as

ed
on

as
su

m
pt

io
ns

w
hi

ch
m

ay
no

t
be

(i
i)

G
iv

es
qu

ic
k

as
se

ss
m

en
t

of
re

lia
bi

lit
y.

ac
ce

pt
ab

le
fo

r
cr

it
ic

al
so

ft
w

ar
e.

8
M

ar
ko

v
m

od
el

s
(i

)
C

le
ar

ly
de

sc
ri

be
s

bo
th

th
e

fa
ilu

re
of

an
it

em
(i

)
Pr

ac
ti

ca
ll

im
it

at
io

n
du

e
to

st
at

e
sp

ac
e

ex
pl

os
io

n.
an

d
it

s
su

bs
eq

ue
nt

re
pa

ir.
(i

i)
C

an
ha

nd
le

pr
ob

ab
ili

ty
of

an
ev

en
t

re
su

lt
in

g
fr

om
a

se
qu

en
ce

of
su

b-
ev

en
ts

9
B

ay
es

ia
n

be
lie

f
(i

)
A

llo
w

s
co

m
bi

ni
ng

di
ff

er
en

t
ki

nd
s/

so
ur

ce
s

of
da

ta
.

(i
)

R
eq

ui
re

s
ex

pe
rt

B
B

N
de

ve
lo

pe
rs

.
ne

tw
or

ks
(B

B
N

)
(i

i)
A

llo
w

s
un

ce
rt

ai
nt

ie
s

in
pa

ra
m

et
er

s
to

be
(i

i)
Q

ua
lifi

ca
ti

on
of

ex
pe

rt
s

co
ul

d
be

an
is

su
e.

ta
ke

n
in

to
ac

co
un

t.
(i

ii)
D

if
fic

ul
ty

in
co

lle
ct

in
g

en
ou

gh
an

d
ac

cu
ra

te
da

ta
fo

r
ne

w
pr

od
uc

ts
.

10
A

rc
hi

te
ct

ur
e

(i
)

B
as

ed
on

th
ro

ug
h

an
al

ys
is

of
th

e
so

ft
w

ar
e

ar
ch

it
ec

tu
re

.
(i

)
R

eq
ui

re
s

ex
pe

rt
/e

xp
er

ie
nc

ed
pe

rs
on

ne
l.

ba
se

d
m

od
el

s
(i

i)
G

en
er

al
ly

,d
oe

s
no

t
co

ns
id

er
th

e
fa

ct
or

s
as

so
ci

at
ed

w
it

h
th

e
ta

rg
et

co
m

pi
le

r/
ha

rd
w

ar
e/

en
vi

ro
nm

en
t.

Ta
bl

e
2.

2:
Su

m
m

ar
y

of
th

e
re

la
te

d
w

or
k

-I
I

2. Related work / 31

2.9 Summary

Literature review revealed some of the limitations in existing methods, and also the

difficulties in using them to estimate software reliability (Tables 2.1 to 2.2 on pages 29–

30). The main gaps or limitations observed in existing methods are:

1. Results of existing Verification & Validation (V&V) techniques are qualitative in

nature, and are difficult to be integrated with the Probabilistic Safety Assessment

(PSA) of a safety-critical system.

2. Difficulty in practical implementation of formal methods for large and complex

applications.

3. Difficulty in practical implementation of model checking techniques due to the

state space explosion problem.

4. Some of the software test coverage criteria were found to be misleading in certain

situations.

5. The equivalent mutants problem limits the use of mutation testing in practice.

6. Results obtained through software reliability estimation techniques, which are

based on the historical data or expert judgment/opinion may not be accurate for

new products.

7. As software systems grow large and complex, reusability becomes an important

factor. Hence, for large and complex systems, black box based software reliability

estimation techniques may not be appropriate.

3
Background information

This chapter provides a brief background about instrumentation and control systems in

nuclear reactors and the case studies used in the present study.

3.1 Instrumentation and control in nuclear reactors

Figure 3.1: A fission reaction

Nuclear Power Plants (NPPs) are power stations which use fissile material such as

Uranium-235 or Plutonium-239 as its fuel (Figure 3.1). NPPs use the heat produced

during the fission reaction to generate electricity. Nuclear reactors may be divided into

32

3. Background information / 33

Figure 3.2: A typical sodium-cooled, pool-type fast reactor

thermal reactors and fast reactors. Thermal reactors employ slow moving neutrons for

the fission reaction, whereas fast reactors use fast moving neutrons. An example of a

fast reactor is the Prototype Fast Breeder Reactor (PFBR) [175], which is a 500MWe

sodium cooled fast breeder reactor. The Figure 3.2 shows the schematic of a typical

sodium-cooled fast reactor.

To ensure the smooth functioning of the plant during: reactor start-up, operation,

fuel handling, shutdown, and maintenance; a lot of hardware and software

based systems are used to monitor and control various plant parameters. These

instrumentation and control systems are safety systems running on real-time computers,

with fault tolerant features such as: redundant power supplies, redundant network

connections, switch-over logics, etc. [176].

Also, safety-critical systems usually use Triple Modular Redundancy (TMR)

architecture, where as safety related systems use dual hot standby architecture [176].

3. Background information / 34

3.2 Case studies used in the present study

Six systems, which are representative of safety systems in nuclear reactors, are used as

case studies in the present study. Below is the brief description of each system:

3.2.1 Fresh subassembly handling system

FSHS

Heater control and monitoring
(software controlled)

Pre-heating
vessel

Fresh fuel subassembly

FSEP gate
(software controlled)

⇒ ⇒

⇓

Transfer arm ⇐ Inclined fuel transfer machineTo the reactor core ⇐

Figure 3.3: The flow of fresh fuel subassembly

In nuclear reactors, fuel is replenished at approximately once every year. The spent

fuel sub-assemblies are replaced with fresh fuel sub-assemblies during the refuelling

campaign of the reactor. A fresh fuel sub-assembly is received at the Fresh Sub-assembly

Receiving Facility (FSRF), and after initial inspections, it is sent to the Fresh Sub-

assembly Preheating Facility (FSPF) through the Fresh Sub-assembly Entry Port (FSEP)

gate. After pre-heating, the fresh fuel sub-assembly is sent to the reactor core using the

Inclined fuel transfer machine (IFTM) and Transfer arm (TA) (Figure 3.3).

The main purpose of the Fresh Sub-assembly Handling System (FSHS) [177]

software is to collect necessary plant information, generate interlocks, and to automate

the process of fresh fuel handling.

3. Background information / 35

3.2.2 Reactor start-up system

To smoothly start a reactor from reactor shutdown to reactor in operation state, several

conditions have to be satisfied. Reactor Startup System (RSU) [178] (Figure 3.4) checks

all these conditions and gives authorization for starting up the reactor. To check the list

of conditions, the RSU scans hard wired inputs from different plant systems and process

computer (which stores soft inputs given by other systems).

s11

c1
· · ·

· · ·
cn

Allow reactor startup

snk

...

· · ·

· · ·

Processed

field

signals

Figure 3.4: Logic diagram of the reactor startup system (ci is one of the condition to be satisfied
for the reactor startup, and sij is the jth sub-condition of ci)

The RSU software scans all the conditions to be satisfied for the reactor startup

(c1−cn in Figure 3.4), and sends alarms for conditions which could not be satisfied. Also,

while reactor startup if proper authorization is given, few conditions can be inhibited;

for which RSU software sends respective alarms to the operator.

3.2.3 Steam generator tube leak detection system

As fast breeder reactors use liquid sodium as its coolant, a leak in the steam generator

tubes (Figure 3.5 on the next page) causes violent sodium-water reaction, followed by

hydrogen release. Hence, the Steam Generator Tube Leak Detection system (SGTLD)

[179] is provided to detect leaks, send alarm signals to the operator, and to isolate steam

generators to prevent further leaks and reaction. The SGTLD software also indicates the

leaks as: small, medium, or large; and takes the appropriate safety action.

3. Background information / 36

Figure 3.5: Steam generator in a sodium cooled fast reactor

3.2.4 Core temperature monitoring system

The software based CTMS [180] (Figure 3.6 on the next page) continuously keeps track

of nuclear reactors’ core temperature through thermocouples. The main purpose of

the system is to detect anomalies such as plugging of fuel sub-assemblies, error in

core loading and uncontrolled withdrawal of control and safety rods. The software

scans reactor core inlet temperatures and sub-assembly outlet temperatures periodically;

validates the inputs and calculates various parameters required for generating alarms

and Safety Control Rod Axe Man (SCRAM) (emergency reactor shutdown) signals.

These signals are generated when the computed parameters cross their respective

threshold limits. The alarms generated are sent to the control room for the operator,

and the SCRAM signal is sent to Control and Safety Rod Drive Mechanism (CSRDM)

3. Background information / 37

Figure 3.6: Schematic of the software based CTMS

and/or Diversified Safety Rod Drive Mechanism (DSRDM) to drop the control rods into

the reactor core, to stop the fission reaction. CTMS is classified as safety-critical system,

and has two main failure modes: (i) failure to initiate SCRAM signal when parameters

exceed their threshold value; which places demand on the hardware based CTMS and

other diversified shutdown systems, (ii) generation of spurious SCRAM signals; which

affects the plant availability.

3.2.5 Radioactive gaseous effluent system

Radioactive gas effluents are collected from various sources of the reactor, and are stored

in delay tanks. After certain delay, depending upon the radioactivity level of the effluent,

it is discharged to the environment after filtering through the stack (Figure 3.7 on the

next page).

Radioactive Gaseous Effluent System (GES) [181] software processes the system

signals and produces the required control and alarm signals for achieving safe

radioactive effluent handling. The control actions mainly include start/stop of

compressors and open/close of valves.

3. Background information / 38

❋
�✁
✂✄
☎
✆

❙
✝
☎
✞
✄
✂t
✟
✠

❘
✡
☛
❱
✄
✟
✂�
✁t
✂�
❡
✟

❋
�✁
✂✄
☎

❋
�✁
✂✄
☎

◆
❘
❱

◆
❘
❱

❈
✶

❈
✷

❋
☞

❉
✄
✁t
✌
✂t
✟
✠
✆

❘
t
✍
�❡
t
✎
✂�
✏
✄
✞
t
✆
✆
❡
✝
☎
✎
✄
✆

❚
❡
✆
✂t
✎
✠

❚

❚

❚

P
☎
✄
✆
✆
✝
☎
✄
✆
✄
✟
✆
❡
☎
✆

Fi
gu

re
3.

7:
Th

e
sc

he
m

at
ic

of
Ra

di
oa

ct
iv

e
G

as
eo

us
Ef

flu
en

tS
ys

te
m

(G
ES

)
(H

er
e

th
e

sy
m

bo
l.
/

in
di

ca
te

s
a

pn
eu

m
at

ic
va

lv
e,

N
RV

in
di

ca
te

s
a

no
n-

re
tu

rn
va

lv
e,

FM
in

di
ca

te
s

th
e

flo
w

m
et

er
,C

1
an

d
C

2
ar

e
th

e
co

m
pr

es
so

rs
,a

nd
th

e
it

em
s

co
nt

ro
lle

d
by

th
e

so
ft

w
ar

e
ar

e
in

di
ca

te
d

by
th

e
bl

ue
co

lo
r)

3. Background information / 39

3.2.6 Safety grade decay heat removal system

After reactor shutdown, the heat produced by the fuel due to radioactive decay is called

the decay heat. The Safety Grade Decay Heat Removal system (SGDHR) [182] is used to

remove the decay heat from the reactor core (Figure 3.8). To ensure sufficient cooling,

a reactor may have more than one independent and identical SGDHR.

The instrumentation and control (I&C) system of the SGDHR monitors/controls

sodium temperature, sodium flow, sodium level, sodium leak, argon pressure, air

pressure, and valve positions signals. The control actions of the system include:

open/close of valves, heater control, blower control, pump trip control, etc. Also, the

system generates appropriate alarms.

Figure 3.8: Schematic of one of the four independent and identical loops of safety grade decay heat
removal system

Part II

Studies on software reliability

4
Research methodology

This chapter describes the research methodology followed in the present study. The

rationale behind the software reliability definition, choice of case studies, the methods

used to estimate software reliability, and experimental details presented.

4.1 Software reliability definition

As mentioned in Section 1.3 on page 2, the definition of software reliability wrt. time is

arguable. And in general, reliability in safety systems is quantified in terms of number

of failures per demand in case of protection systems, and in number of failures per hour

in continuous systems. To cater to both kinds of systems, the present study considers the

software reliability definition as [16]: "The reliability of a program P is the probability

of its successful execution on a randomly selected element from its input domain". In

protection systems, to convert the estimated reliability in to PFD, it is multiplied by

demand per hour/year. Whereas, in continuous systems, the estimated reliability is

multiplied by the operational profile to get the reliability in terms of failures/hour.

In general, software tends to be slower and unreliable wrt. time due to software

aging [183]. The major reasons for software aging include: (i) memory leaks, (ii)

floating point error accumulation, (iii) increase in the amount of data to be processed

wrt. time, (iv) infection by malware, etc. As safety-critical software tends to smaller,

focused, and written in safe subset of programming languages; the above problems can

be pro-actively monitored and controlled. Also, as software is fused in to Read Only

Memory (ROM), the software cannot be modified by malware. Hence, in the present

41

4. Research methodology / 42

study, the software reliability is assumed to remain constant wrt. time as long as the

environment remains the same.

4.2 Choice of case-studies

Reactor in operation

��

Fuel handling

��

Reactor startup

OO

Fuel handling startup

OO

Reactor shutdown

TT II

Figure 4.1: Various states of a nuclear reactor

System Abbreviation Active in

Fresh Subassembly Handling System FSHS Fuel handling state
Reactor Startup System RSU Reactor startup state
Steam Generator Tube Leak Detection system SGTLD All states
Core Temperature Monitoring System CTMS Reactor in operation state
Radioactive Gaseous Effluent System GES All states
Safety Grade Decay Heat Removal system SGDHR Reactor in shutdown state

Table 4.1: Case studies chosen in the present study

A nuclear reactor can be in any one of the following states (Figure 4.1): (i) Reactor

start-up, (ii) Reactor in operation, (iii) Fuel handling start-up, (iv) Fuel handling, and

(v) Reactor shutdown. To cover all the states of a nuclear reactor, six case studies have

been chosen for the thesis (Table 4.1). Also, as a nuclear reactor spends most of the time

in operation state, three case studies have been chosen for reactor in operation state.

The RSU and Fuel handling Startup system (FSU) are similar in nature, hence among

the two, the current study only presents the results of FSU.

4.3 Method

The present study uses the results of software testing to quantify software reliability.

The method involves the following steps:

4. Research methodology / 43

1. Creation of a model of the software:

A semi-formal and executable model of the software is created using a pure functional

programming paradigm. The model is used as a test oracle.

2. Generating effective test cases:

For the given software under test, a set of test cases is generated, such that each test-

case has a unique execution path. The test cases are expected to have high MC/DC,

LCSAJ coverage, and mutation score.

3. Calculation of software test adequacy:

For each case study, the test adequacy of the software with the generated test cases

is determined using conservative test coverage and mutation score. The computed test

adequacy is in range [0,1]; where 0 indicates no testing has been carried out, and 1

indicates that the test cases are likely to detect all faults in the software.

4. Quantification of software reliability:

Using the test adequacy value, and based on the accuracy of the test oracle, three

approaches to estimate software reliability are proposed.

4.4 Experimental details

4.4.1 Software under test

For each case study (Section 3.2 on page 34), the software is modeled using the graphical

Drakon editor [184], and is converted to the Erlang [185] programming language,

which acts as a test oracle. Erlang was chosen due to its pure functional programming

paradigm, single assignment variables and pattern matching; which makes it possible

to reason with the correctness of the model. Also, erlang has been used to build highly

reliable and available telecom systems [186].

The software under test is written in C programming language, following important

MISRA [108] guidelines.

4. Research methodology / 44

4.4.2 Software testing

1. On host:

Most of the testing is carried on the host machine as the target platform may not be

powerful enough to perform computationally intensive tasks such as mutation based

testing. As the software under test is written in portable C programming language using

MISRA guidelines, it is easily portable on the target with minimal changes. The model

(which acts as a test oracle) written in the erlang programming language is run on the

host machine.

The results on the host machine are matched with results using the Motorola m68k

instruction set simulator Musasim [187] before testing on the target hardware.

2. On target:

The test cases are run on the target (a real time computer) [188] by feeding the test

cases through the Ethernet and are matched with results on the host machine. In the

current study, the software under test runs on bare metal without an operating system.

This is to avoid any uncertainty in reliability of operating system, and also due to the

fact that most of the safety-critical software in nuclear reactors are simple and focused

systems.

For complex safety-critical systems which require multi-tasking, multi-threading, or

nested interrupt support; a trusted, safe, and certified real-time operating system must

be used (e.g. INTEGRITY [189]). The reliability of such operating systems is assumed to

be≈ 1 (i.e. using an operating system does not decrease the reliability of the application

software). The current study does not report results based on trusted operating systems.

4.4.3 Parallel processing

Some of the techniques presented in the thesis are computationally expensive for large

and complex applications, hence are written to support multi-core environment. The

results presented in the present study were obtained by executing tasks in parallel on

an Intel Xeon X7460 2.66GHz - 24 core machine using the multiprocessing module [190]

in Python programming language [191].

5
Test adequacy in safety-critical software

This chapter proposes a metric using conservative test coverage and mutation score to

determine the test adequacy in safety-critical software. The test adequacy value serves

as one of the inputs to estimate the software reliability.

5.1 Introduction

Safety-critical software must adhere to stringent quality standards and is expected to

be thoroughly tested. However, exhaustive testing of software is usually impractical.

The two main challenges faced by a software testing team are generation of effective

test cases and demonstration of testing adequacy. The goal of this chapter is to propose

a method to generate a set of test cases, and to propose an intuitive and conservative

approach to determine the test adequacy in safety-critical software.

Test cases are generated based on the control flow information generated by the

compiler, and by using genetic algorithms. The conservative test coverage of unique

execution path test cases and the results from mutation testing are combined to

determine the test adequacy. Although mutation testing is a powerful technique, the

difficulty in identifying equivalent mutants has limited its practical utility. To gain

confidence on the computed test adequacy: (i) faults during mutation testing must be

induced at all possible execution paths of the code, (ii) properties of unkilled mutants

must be studied, and (iii) all equivalent mutants must be detected. To achieve the above

goals; results of static, dynamic and coverage analysis of the mutants is presented, and

a technique to identify the likely equivalent mutants is proposed.

45

5. Test adequacy in safety-critical software / 46

5.2 Challenges

Software in safety and mission critical applications often require proof that they have

been thoroughly tested. Hence, programmers and testers are expected to write good

test cases [118] which can verify the behavior of the entire system. However, in real life

applications, exhaustive testing is impractical as the input domain could be extremely

large or infinite. Thus, the main challenge is to demonstrate the adequacy of testing -

effectively.

5.3 Software in the case studies

Initialize system

Check system healthiness

Read inputs

Compute outputsLoop

Check
system properties
(post conditions)

Send output to the
final control element

Safe state

ok

ok

System failure

Invalid inputs

Assertion failed

Property failed

ok

ok

Safe output

Figure 5.1: Execution flow in safety-critical software

As mentioned in Section 3.2 on page 34, six safety systems in a nuclear reactor are

taken up as case studies. The execution flow of the software in case studies is illustrated

in Figure 5.1. And the software in case studies has the following characteristics:

5. Test adequacy in safety-critical software / 47

1. Software is written in portable C programming language, following important

MISRA [108] guidelines.

2. Unless required, signed integers are avoided.

3. Function-like macros are avoided.

4. Only fixed bounded for loops are used.

5. No dynamic memory allocations are used.

6. Cyclomatic complexity of each function is kept below 10 (with few exceptions).

7. The software passes the following static, dynamic, and security checkers:

(a) No warnings with static analyzers: Clang [192], and Cppcheck [193] with

—enable=all as argument.

(b) No warnings with Splint [194] static analyzer using -checks, -strict-lib, and

-realrelatecompare as arguments.

(c) Final score = 0 using BogoSec [195] code security scanner. The scanners

include: FlawFinder [196], RATS [197], and Lintian [198].

(d) No warnings or errors found with dynamic analyzers: Valgrind [199] with

–leak-check=full as argument and Electric-Fence [200] for the generated test

cases (Section 5.4.1 on the next page).

8. Assertions have been used to validate inputs and to check impossible conditions

during execution. Functions which do not have assertions are either very

simple/have error handling code/return the error code to the caller.

9. Apart from assertions in functions, system properties (as post-conditions) in the

form of assertions must be met (Figure 5.1 on the previous page).

10. Failure of any assertion leads the system to a safe state (Figure 5.1 on the previous

page).

5. Test adequacy in safety-critical software / 48

Compile the program under test
with gcc using

-fprofile-arcs -ftest-coverage

Large number
of random test cases

+ Black box test cases

Select unique execution
path test cases

Unique test cases

Use genetic algorithms to
generate new test cases

Repeat

Figure 5.2: Test case generation using coverage information and genetic algorithms. (The unique
execution path test case selection - genetic algorithm cycle is repeated till the required code coverage
is achieved).

5.4 Test generation, verification, and coverage

5.4.1 Test case generation

This section proposes an automatic test case generation technique, which can generate

a set of test cases (i.e. the sample) which is a good representation of the infinite input

domain (i.e. the population).

Safety-critical software is often expected to have 100% MC/DC [201] and LCSAJ

coverage [120, 121]. The LCSAJ coverage criterion is considered difficult to achieve

and manage, as a small change in code may decrease LCSAJ coverage; thus requiring

additional test cases.

To solve the above problem for the case studies, basic functional, safety and

boundary tests are written manually, but majority of the test cases are generated through

pseudo and true random number generation [202]. A large number of random test cases

are generated, out of which unique execution path test cases identified by Message

5. Test adequacy in safety-critical software / 49

For each test case in
the list of test cases

Run the test case and gener-
ate the coverage information

(the .gcov file) using
gcov -abcfu

Delete the .gcda file

Calculate the MD5
hash of the .gcov

file using md5sum

Ignore
this test case

Add this test case
to the test suite

Did any of the earlier
test cases generate
this hash value ?Yes No

Figure 5.3: Technique to select unique execution path test cases using gcc, gcov and md5sum. (The
-abcfu arguments to gcc implies to display coverage information of: all blocks, branch probabilities,
branch counts, function summaries, and unconditional branches. The .gcov file consist of the
coverage information in text format, where as the .gcda file consist of the arc transition counts
and other information in binary format)

Digest 5 (MD5) hash of the coverage information are selected and added to the test

suite (Figures 5.2 to 5.3 on pages 48–49).

However, to get good coverage for complex software, simple random numbers

are not sufficient. Hence, genetic algorithms [128] are used to generate test cases

(Figure 5.4 on the next page). Genetic algorithms are evolutionary algorithms, which

attempts to generate solutions for search and optimization problems using techniques

which mimick natural evolution, such as: inheritance, mutation, selection, and

crossover. The algorithm usually starts with a set of randomly generated population

and some known solutions. The algorithm is an iterative process where the population

5. Test adequacy in safety-critical software / 50

in each iteration is called a generation. The algorithm attempts to generate new and

better individuals from the population for the next generation, based on a predefined

fitness function.

In the current study, the initial population for genetic algorithm contains randomly

generated test cases and black box test cases. From the initial population, new test cases

are generated using genertic operators (Figure 5.4), out of which unique execution path

test cases are selected. Here, the selection of unique execution path test cases serves as

the fitness function. This cycle (Figures 5.2 to 5.3 on pages 48–49) is repeated till the

required code coverage is achieved (i.e. 100% MC/DC and LCSAJ). Thus, at the end of

n iterations, large number of test cases are generated, where each test case has a unique

execution path. The goal of generating large number of test cases is to generate as many

different execution path test cases as possible, and to ensure that none of them can lead

to an unsafe state. For all the test cases generated, it is ensured that the software under

test satisfies all the assertions and post-conditions.

(a) Crossing over (b) Double crossing over

(c) Single mutation (d) Multiple mutations

Figure 5.4: Genetic algorithms - inspired by the genetic evolution: crossovers and mutations

5.4.2 Verification of test cases

The generated test cases are verified using a model written using the Drakon editor

[184]. The Drakon notations were developed for the Buran space project in Russia

[203–205] to provide simple and clean graphical notations for program writing. The

5. Test adequacy in safety-critical software / 51

Drakon notations can also be used for requirements modeling, and the resultant model

is a semi-formal specification of the software. An example of semi-formal specification

in drakon for FSHS is shown in Appendix − A on page 101.

The Drakon editor can automatically convert the diagrams into the Erlang [185]

programming language; the Drakon-Erlang combination is used to model requirements

in visual functional programming paradigm [206] using the Drakon editor [207]. The

generated erlang program is the executable specification of the software, and is used

as a test oracle. Erlang was chosen primarily due to its pure functional programming

paradigm, single assignment variables, and pattern matching; which makes it possible

to reason with the correctness of the model.

After the requirements modeling, the semi-formal specification undergoes basic

checks by the Drakon editor, and Erlang specific checks by Dialyzer (Discrepancy

Analyzer for Erlang programs) [208,209]. Dialyzer checks are performed by enabling all

warnings (i.e. -Wunmatched_returns -Werror_handling -Wrace_conditions -Wunderspecs)

[210]. Also, the model written in the erlang programming language must always have

100% MC/DC and statement coverage with the generated test cases (Section 5.4.1 on

page 48).

5.4.3 Conservative test coverage

The final set of test cases must result in high MC/DC and LCSAJ coverage in the

implementation code; else additional test cases should be added manually. As

mentioned in Section 2.4 on page 22, use of single control coverage criterion alone

could be misleading; hence, we define a conservative coverage metric defined as: the

minimum of LCSAJ coverage, MC/DC, branch, and statement coverage. As the branch

coverage is always ≤ LCSAJ coverage, the conservative test coverage of a function in a

program is defined as:

min (LCSAJ coverage, MC/DC, Statement coverage) (5.1)

It must be noted that the above metric (Equation (5.1)) indicates the test coverage

5. Test adequacy in safety-critical software / 52

achieved during system testing, and not during unit testing of a function.

5.5 Mutation testing

An effective set of test case must have both good coverage and good fault catching

capability. Hence, apart from calculating conservative test coverage, the program under

test is subjected to mutation testing. Prior to carrying out mutation testing, the source

code is preprocessed by removing all comments; and is formatted/indented to make

the syntax consistent for parsing. While compiling mutants, assertions are enabled to

kill mutants as quickly as possible. Also, assert statements are not mutated, as they

represent the conditions which cannot occur during execution.

The effectiveness of mutation testing may be judged by the quality and number of

mutation operators used (Tables B.1 to B.2 on pages 109–110). And, to gain confidence

on mutation testing, faults must be induced at all possible execution paths of a program.

All execution paths of a program can be visualized by concatenating all the LCSAJs.

The Figures 5.5 to 5.10 on pages 53–58 shows all the paths (including the unfeasible

paths) in the case studies. It also shows the LCSAJ jump points where faults have been

induced and killed. The results indicate that: there exists no path (from program entry

to exit) where faults have not been induced and caught, hence giving confidence on the

effectiveness of mutation testing.

A mutant program while under execution is polled at regular intervals, and if it does

not finish its execution within a specified time period, it is considered to be in infinite

loop, and is terminated.

5.5.1 Mutant properties

To gain confidence on the test cases, it is also necessary to understand the characteristics

of the mutants which could not be killed, and how they differ from the killed mutants.

In this regard static, dynamic and coverage analysis of mutants is performed.

The results (Tables C.1 to C.12 on pages 111–120) indicate that the static analysis of

mutants (using Splint [194], Clang [192], and Cppcheck [193]) alone could not clearly

5. Test adequacy in safety-critical software / 53

Figure 5.5: Concatenated LCSAJs for the FSHS. (The green colored nodes indicate the LCSAJ points
where faults have been induced and caught; the red colored nodes indicate otherwise)

5. Test adequacy in safety-critical software / 54

Figure 5.6: Concatenated LCSAJs for the RSU. (The green colored nodes indicate the LCSAJ points
where faults have been induced and caught; the red colored nodes indicate otherwise)

5. Test adequacy in safety-critical software / 55

Fi
gu

re
5.

7:
Co

nc
at

en
at

ed
LC

SA
Js

fo
r

th
e

SG
TL

D
.(

Th
e

gr
ee

n
co

lo
re

d
no

de
s

in
di

ca
te

th
e

LC
SA

J
po

in
ts

w
he

re
fa

ul
ts

ha
ve

be
en

in
du

ce
d

an
d

ca
ug

ht
;

th
e

re
d

co
lo

re
d

no
de

s
in

di
ca

te
ot

he
rw

is
e)

5. Test adequacy in safety-critical software / 56

Figure 5.8: Concatenated LCSAJs for the CTMS. (The green colored nodes indicate the LCSAJ points
where faults have been induced and caught; the red colored nodes indicate otherwise)

5. Test adequacy in safety-critical software / 57

Figure 5.9: Concatenated LCSAJs for the GES. (The green colored nodes indicate the LCSAJ points
where faults have been induced and caught; the red colored nodes indicate otherwise)

5. Test adequacy in safety-critical software / 58

Figure 5.10: Concatenated LCSAJs for the SGDHR. (The green colored nodes indicate the LCSAJ
points where faults have been induced and caught; the red colored nodes indicate otherwise)

5. Test adequacy in safety-critical software / 59

differentiate between killed and unkilled mutants. Whereas, the dynamic analysis (using

Valgrind [199] and Electric-Fence [200]) indicate that the unkilled mutants are not likely

to have any memory corruptions or leaks. Also, the coverage impact (calculated as

the average change in the number of times a statement/branch/jump/function-call was

executed in a mutant program with respect to the original program) suggests that the

majority of unkilled mutants have little or no change in their code coverage.

From the obtained results (e.g. for CTMS − Figures 5.11 to 5.12 on pages 60–

61), it is difficult to understand the characteristics of mutants by plotting results of

static and dynamic analysis alone. Hence, Principal Component Analysis (PCA) [211]

of static, dynamic, and coverage analysis results of mutants is performed. The PCA

plot results (Figures 5.13 to 5.15 on pages 62–64) indicate that the characteristics of

the unkilled mutants have little variance (i.e. they have similar static, dynamic, and

coverage properties); when compared to the killed mutants. This result provides little

confidence that the majority of the un-killed mutants are likely to be equivalent.

The result also indicates which of the unkilled mutants are far away from the original

program on the PCA plot (i.e. the mutants which are very much different from the

original program). This result helps in prioritizing the unkilled mutants (i.e. the farthest

unkilled mutant from the original program on the PCA plot must be attempted to be

killed first). It has also been observed that: similar mutants are nearer to each other on

the PCA plot (Figure 5.16 on page 65). Thus, similar unkilled mutants could be killed by

a adding a new test case.

5.5.2 Calculating mutant score

As mentioned in Equation (2.1) on page 23, the result of mutation testing is the mutation

score, defined as:

Mutation score =
K

G− E

where: K is the number of mutants killed, G is the number of mutants generated, and E

is the number of equivalent mutants. And unless all the equivalent mutants are detected,

the mutation score will always be < 1.

5. Test adequacy in safety-critical software / 60

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

V
a
lg

ri
n
d
 w

a
rn

in
g
s
 (

n
o
rm

a
liz

e
d
)

Mutants

 Unkilled

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

V
a
lg

ri
n
d
 w

a
rn

in
g
s
 (

n
o
rm

a
liz

e
d
)

Mutants

 Killed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

C
h
a
n
g
e
 i
n
 c

o
v
e
ra

g
e
 (

n
o
rm

a
liz

e
d
)

Mutants

 Unkilled

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
h
a
n
g
e
 i
n
 c

o
v
e
ra

g
e
 (

n
o
rm

a
liz

e
d
)

Mutants

 Killed

Figure 5.11: Dynamic analysis of CTMS mutants using: Valgrind and Change in coverage

5. Test adequacy in safety-critical software / 61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

S
p

lin
t

w
a

rn
in

g
s
 (

n
o

rm
a

liz
e

d
)

Mutants

 Unkilled

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

S
p

lin
t

w
a

rn
in

g
s
 (

n
o

rm
a

liz
e

d
)

Mutants

 Killed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

C
la

n
g

 w
a

rn
in

g
s
 (

n
o

rm
a

liz
e

d
)

Mutants

 Unkilled

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
la

n
g

 w
a

rn
in

g
s
 (

n
o

rm
a

liz
e

d
)

Mutants

 Killed

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

C
p

p
c
h

e
c
k
 w

a
rn

in
g

s
 (

n
o

rm
a

liz
e

d
)

Mutants

 Unkilled

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
p

p
c
h

e
c
k
 w

a
rn

in
g

s
 (

n
o

rm
a

liz
e

d
)

Mutants

 Killed

Figure 5.12: Static analysis of CTMS mutants using: Splint, Clang, and Cppcheck

5. Test adequacy in safety-critical software / 62

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

P
rin

ci
pa

l c
om

po
ne

nt
 -

 2

Principal component - 1

Killed mutants (774 in no.s)
Unkilled mutants (309 in no.s)

 Original program

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

P
rin

ci
pa

l c
om

po
ne

nt
 -

 2

Principal component - 1

Killed mutants (246 in no.s)
Unkilled mutants (97 in no.s)

 Original program

Figure 5.13: Principal component analysis (PCA) of static, dynamic, and coverage analysis of
mutants for: FSHS and RSU

5. Test adequacy in safety-critical software / 63

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
rin

ci
pa

l c
om

po
ne

nt
 -

 2

Principal component - 1

Killed mutants (3675 in no.s)
Unkilled mutants (1195 in no.s)

 Original program

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
rin

ci
pa

l c
om

po
ne

nt
 -

 2

Principal component - 1

Killed mutants (4323 in no.s)
Unkilled mutants (1623 in no.s)

 Original program

Figure 5.14: Principal component analysis (PCA) of static, dynamic, and coverage analysis of
mutants for: SGTLD and CTMS

5. Test adequacy in safety-critical software / 64

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

P
rin

ci
pa

l c
om

po
ne

nt
 -

 2

Principal component - 1

Killed mutants (209 in no.s)
Unkilled mutants (125 in no.s)

 Original program

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

P
rin

ci
pa

l c
om

po
ne

nt
 -

 2

Principal component - 1

Killed mutants (699 in no.s)
Unkilled mutants (178 in no.s)

 Original program

Figure 5.15: Principal component analysis (PCA) of static, dynamic, and coverage analysis of
mutants for: GES and SGDHR

5. Test adequacy in safety-critical software / 65

unsigned int Sum (unsigned int array[], size_t length) {

unsigned int i = 0, sum = 0 ;

assert (length > 0) ;

for (i = 0; i < length; ++i) {

sum += array[i] ;

}

return sum ;

}

(a)

unsigned int Sum (unsigned int array[], size_t length) {

unsigned int i = 0, sum = 0 ;

assert (length > 0) ;

for (i == 0; i < length; ++i) {

sum += array[i] ;

}

return sum ;

}

(b)

unsigned int Sum (unsigned int array[], size_t length) {

unsigned int i = 0, sum = 0 ;

assert (length > 0) ;

for (i <= 0; i < length; ++i) {

sum += array[i] ;

}

return sum ;

}

(c)

Figure 5.16: Example of mutants with similar static, dynamic, and coverage properties: (a) The
original program, (b) Mutant-1, and (c) Mutant-2 (the induced faults are indicated by red color).
Both Mutant-1 and Mutant-2 share the same coordinates on the PCA plot.

5. Test adequacy in safety-critical software / 66

Hence, to detect likely equivalent mutants, a technique is proposed, which is based

on the principle that: if P is a program, and M is its equivalent mutant created by

injecting a fault F in the statement S, then P
′

(mutant of P) and M
′

(mutant of M)

created by injecting fault(s) F
′

in statement(s) succeeding S, must also be equivalent

(Figures 5.17 to 5.18 on pages 66–67). Assuming an effective set of test cases, if several

such equivalent P
′

and M
′

are generated; then P and M are likely to be equivalent.

Program (P)

**

Higher order mutation1

��

Mutant (M)

tt

Higher order mutation1

��

Test case results match ?

Yes

��

No

++
1st mutant of P

**

1st mutant of M

tt

Not equivalent

Test case results match ?

Yes

No

++
Nth mutant of P

))

Nth mutant of M

tt

Not equivalent

Test case results match ?

Yes

��

No

++
Likely equivalent Not equivalent

Figure 5.17: Algorithm for detecting equivalent mutants

As the above detection algorithm requires creating large number of mutants, it is

computationally intensive. To improve the speed of detection, higher order mutation

[212] is used. Also, as each mutant can be executed in parallel, the algorithm is run on

Intel Xeon X7460 2.66GHz - 24 core machine using the multiprocessing module [190] in

Python [191].

5. Test adequacy in safety-critical software / 67

int Max (int *array ,

size_t length) {

size_t i ;

int max ;

assert (length > 0);

assert (array != NULL);

max = array [0] ;

for (i = 1; i < length; ++i)

{

if (array[i] > max)

max = array [i];

}

return max ;

}

(a)

int Max (int *array ,

size_t length) {

size_t i ;

int max ;

assert (length > 0);

assert (array != NULL);

max = array [0] ;

for (i = 1; i != length; ++i)

{

if (array[i] > max)

max = array [i];

}

return max ;

}

(b)

int Max (int *array ,

size_t length) {

size_t i ;

int max ;

assert (length > 0) ;

assert (array != NULL);

max = array [0] ;

for (i = 1; i < length; ++i)

{

if (array [i-1] < max)

max = array [i];

}

return -1 * max ;

}

(c)

int Max (int *array ,

size_t length) {

size_t i ;

int max ;

assert (length > 0) ;

assert (array != NULL);

max = array [0] ;

for (i = 1; i != length; ++i)

{

if (array [i-1] < max)

max = array [i];

}

return -1 * max ;

}

(d)

Figure 5.18: Example of equivalent mutant detection: (a) P, the original program; (b) M, the
equivalent mutant of P; (c) P

′
, the mutant of P; and, (d)M

′
, the mutant ofM. (The induced faults

are indicated by red color) and keywords by blue color)

5. Test adequacy in safety-critical software / 68

For every unkilled mutant, 10 higher order mutants (each with 10 faults) are

generated and are checked for equivalence. The equivalent mutant detection algorithm

has detected several non-equivalent mutants and few false positives (i.e. equivalent

mutant detected as non-equivalent) (Table 5.1). The false positives are identified

manually, and further test cases are added to kill the identified non-equivalent mutants.

5.5.3 Threat to validity

The following situations are the main threats to the validity of the approach:

1. Two equivalent mutants reading data from uninitialized memory locations

produce different results, thus the algorithm may identify them incorrectly as non-

equivalent.

2. As mentioned in Section 5.5.2 on page 59, the faults are induced in P and M in

statement(s) succeeding S, to produce P
′

and M
′
. If the induced fault(s) changes

the outcome of the statement S itself (e.g. in loops), then two equivalent mutants

may be incorrectly identified as non-equivalent.

3. If the number of equivalent P
′

and M
′

generated are very low, then the algorithm

may incorrectly identify a non-equivalent mutant as equivalent.

Assuming that the above mentioned uncertainties in mutation score calculation are

low, the mutation score is ≈ 1. An interesting by-product of mutation testing is the

identification of safety-critical functions in a program. That is: if a mutant for any of

System Number of No. mutants No. non-equivalent False
under test mutants unkilled mutants detected positives

FSHS 1083 309 19 1
RSUP 343 97 9 1

SGTLD 4870 1195 58 5
CTMS 5946 1623 8 7
GES 334 125 4 1

SGDHR 877 178 17 15

Table 5.1: Results of the equivalent mutant detection algorithm

5. Test adequacy in safety-critical software / 69

the test cases, fails in an unsafe state, then the function in which fault was induced is

safety-critical in nature. Such functions must have high test coverage.

5.6 Assurance of rigorous testing through test adequacy

To give weightage to large, complex, frequently called, and safety-critical functions; the

test coverage is calculated as a weighted average, given as:

Test coverage =

∑
ti wi∑
wi

(5.2)

where, ti is the conservative test coverage (Section 5.4.3 on page 51) achieved in a

function during the system testing; and wi is the weight assigned to each function as:

wi = No. of statements

× Cyclomatic complexity

× Frequency of the function call

× Safety-critical nature (5.3)

As an effective set of test cases must have good fault catching capability as well as

good test coverage, the rigor in software testing expressed as the adequacy of testing, is

estimated using both test coverage (Equation (5.2)) and mutation score (Equation (2.1)

on page 23) as:

Test adequacy = Test coverage×Mutation score (5.4)

5.7 Results

In the test adequacy results (Table 5.2 on the next page), using the LDRA Testbed [213],

it was found that few of the MC/DCs and some of the LCSAJs could not be covered as

they are not feasible. Hence, they are ignored. The unfeasible MC/DCs and LCSAJs have

been identified and manually checked. In all the case studies, all the feasible MC/DCs

and LCSAJs have been covered; hence, the test adequacy in the all case studies is ≈ 1.

5. Test adequacy in safety-critical software / 70

System No. of unique No. of unique execution Test
under test test cases path test cases adequacy

FSHS > 3 x 105 302174 0.9001
RSUP > 3 x 105 10772 0.8824

SGTLD > 3 x 105 378554 0.9806
CTMS > 3 x 105 311002 0.9922
GES > 3 x 105 95 0.8600

SGDHR > 3 x 105 98118 0.9655

Table 5.2: Test adequacy achieved in case studies

5.8 Summary of results

To inspire confidence on safety-critical software, proof of adequate testing is a must.

This chapter has demonstrated an approach to determine the test adequacy through

safety-critical case studies in a nuclear reactor. The conservative test coverage combined

with the mutation score is used as a measure of test adequacy. Also, to gain confidence

on the computed test adequacy, three main issues are addressed:

1. To ensure that faults during mutation testing are induced at all execution paths of

the software, all the LCSAJ triplets of the program under test are concatenated to

form a graph. And it is ensured that faults are induced at all possible execution

paths of the above graph.

2. To study the characteristics of unkilled mutants − PCA of static, dynamic, and

coverage analysis of mutants is performed. The PCA results of the case studies

indicate that the majority of the unkilled mutants have similar static, dynamic,

and coverage properties as the original program. Also, the unkilled mutants have

been found to have lesser variation in their characteristics when compared to the

killed mutants. These results give some confidence that: the majority of unkilled

mutants in the case studies are likely to be equivalent mutants.

3. To detect equivalent mutants − a technique to identify equivalent mutants has

been demonstrated. The proposed technique when applied to the case study has

resulted in mutation score ≈ 1.

5. Test adequacy in safety-critical software / 71

Using the proposed method, high test adequacy in the case studies has been

achieved. The computed test adequacy (ignoring the unfeasible MC/DCs and LCSAJs),

indicate the rigor in software testing carried out. The regulators in safety-critical

industries may require the software reliability estimate before permitting the software to

be used in the field. The test adequacy value serves as one of the inputs for the software

reliability estimate.

6
Quantification of software reliability

This chapter proposes an approach combining software verification and mutation testing

to quantify the software reliability in safety systems. Some theoretical results on factors

that may affect software reliability are also presented.

6.1 Prerequisites for the approach

As the proposed approaches are based on software verification and mutation testing, the

prerequisites for this approach are:

6.1.1 Set of test cases

As mentioned in Section 5.4.1 on page 48, software in safety applications often requires

100% MC/DC [201] and LCSAJ coverage [120, 121]. Achieving the above criteria may

require hundreds (in some cases, thousands) of test cases.

Also, the generated test suite must be reduced by removing redundant test cases

which follow the same path of execution (Figure 5.2 on page 48 and Figure 5.3 on

page 49).

6.1.2 Set of mutants

The proposed approach requires a set of single fault (first order) mutants. The number

of mutants that can be generated depends on the number of mutant operators and

the size of the code. As the approach is statistical in nature, the number of generated

mutants should be as large as feasible to achieve the required accuracy.

72

6. Quantification of software reliability / 73

6.1.3 A test oracle

The generated test cases are verified by checking against functional specification,

invariants, post-conditions, and safety properties. The test cases which satisfy these

conditions are termed as verified test cases. It may not be always feasible to write

complete functional specification, safety properties, invariants, and post-conditions to

verify all the test cases. In such cases, the test suite is partially verified. If a path in the

program is proven or verified, then the reliability of the path is assumed to be ≈ 1.

6.1.4 Test adequacy computation

Safety-critical software undergoes rigorous testing, but it is impractical to expect that all

possible execution paths in a program can be tested. Hence, the rigor in software testing

may be expressed as the adequacy of testing, and is estimated using Equation (5.4) on

page 69:

Test adequacy = Test Coverage × Mutation score

The computed test adequacy is in the range [0,1]; and is useful in achieving a

realistic estimate of the reliability based on software testing approaches described in

Sections 6.2.1 to 6.2.3 on pages 74–76.

6.1.5 Compiler correctness

Before starting software testing, it must be ensured that the probability that the compiler

being used produces correct machine code is ≈ 1. A verifying compiler is a grand

challenge and is an ongoing area of research [214]. And no existing methods can

guarantee that a compiler will always produce 100% correct machine code. However,

instead of proving the entire compiler correct, the present study attempts to prove that:

"Even if a compiler has faults, they are not likely to be triggered by the program under

test".

To achieve the above, three compilers are used to match results of test cases covering

all MC/DCs, all LCSAJs of the program under test, and with mutation score ≈ 1. And, if

6. Quantification of software reliability / 74

System - 1
(software compiled
with compiler - 1)

System - 2
(software compiled
with compiler - 2)

Input

System - 3
(software compiled
with compiler - 3)

Voting logic 2/3 Output
Output-2

Output-3

Output-1

Figure 6.1: A 3-version system, where each system runs the same software, but compiled by three
different compilers

all the three compilers (in the present study: gcc [215], llvm [192], and pcc [216, 217])

agree to the outputs of all the test cases, then: the likelihood of incorrect code produced

by any of the three compilers is ≈ 0. Also, the redundant architectures using multiple

compilers (Figure 6.1) may provide little diversity similar to theN-version programming

[41].

6.2 Software reliability estimation

The computed test adequacy Equation (5.4) on page 69 is used as one of the inputs to

determine the software reliability. If the test adequacy is ≈ 1, then the test cases (i.e.

the sample) is a good representation of the infinite input domain (i.e. the population).

Using the test adequacy value, three approaches to estimate software reliability are

proposed:

6.2.1 Approach − 1

If the test oracle or model is an exact representation of the system under test, then: the

reliability of the software can be estimated by:

Test adequacy× No. of test cases verified
Total no. of test cases

(6.1)

6. Quantification of software reliability / 75

The above approach requires true oracle or pseudo oracle [142]. However, in most

of the real life applications, the software under test is large and complex. Hence,

true/pseudo oracle may not be available. For such systems: Approach-2 and 3 are

appropriate (Sections 6.2.2 to 6.2.3 on pages 75–76).

6.2.2 Approach − 2

The approach is similar to the Monte-Carlo method [218] of calculating the value of π.

In which, random darts are thrown at a square in which a circle is inscribed (Figure 6.2).

Area of circle

Area of square
=
π × r2

(2r)2

Area of circle

Area of square
=
π

4

π = 4× Area of circle

Area of square

π ≈ 4× No. of darts inside the circle

Total No. of darts thrown

Figure 6.2: Monte-Carlo method of determining the value of π

Similarly, a program under test may be visualized as a graph (Figure 6.3) consisting

of verified (indicated by the symbol ⇒) and un-verified (indicated by the symbol →)

paths; and randomly induced fault is the dart thrown at it .

◦

~~ �$
p1 ◦

{� !!◦

{� ��

p4

p2 p3

Figure 6.3: Example of paths in a program, where reliability of the path p2 is known (indicated
by⇒)

6. Quantification of software reliability / 76

In the method of π value calculation, a random dart may either fall inside the circle

or outside it; similarly, an induced fault may have three possible outcomes (i.e. result of

the mutant execution): (i) it fails at least one of the verified test cases, indicating that

the fault has been induced in a verified path; (ii) passes all verified test case but fails

at least one of the un-verified test cases, indicating that fault has been induced in an

un-verified path; (iii) does not fail any of the test cases (the unkilled mutant), indicating

that the induced fault may not have any effect on the program.

By generating such large number of mutants, and ignoring all the unkilled mutants,

the reliability is estimated as:

Test adequacy× No. of times at least one of the verified test cases failed
No. of mutants killed

(6.2)

The advantage of this approach is its simplicity, but its results could be biased when

estimating reliability for a highly verified software (i.e. if the mutation testing is not

effective enough, then large number of verified test cases may incorrectly lead to a

higher reliability estimate). Also, it is difficult to integrate operational profile into

the approach. This approach is more suitable for non-nuclear safety applications, but

may also be used for systems important to safety to get an initial/quick approximate

reliability estimate.

6.2.3 Approach − 3

The approach is similar to the Approach - 2 (Section 6.2.2 on the previous page); and is

based on the principle that, if in a given program, reliability of an execution path p is

known, then other paths in the program sharing code with the path p also share the

reliability of p.

6.2.3.1 Estimating fraction of shared code

To estimate the fraction of code shared between paths, mutation based testing is

performed. For example: in Figure 6.4 on the next page, a program has four paths

p1, p2, p3 and p4; and the paths p3, p4 share reliability of p2. If R2, the reliability of path

6. Quantification of software reliability / 77

◦

}}
F

�%

◦

|| �&
p1 ◦

y� !!

p1 ◦

y� !!◦

y� !!

p4 ◦

y�
F

!!

p4

p2 p3 p2 p3

(i) (ii)

Figure 6.4: Faults induced in path p3. (The symbol⇒ indicates a path whose reliability is known,
and F indicates an induced fault.)

p2, is known; then the Ri, the reliability of a path pi can be estimated by:

Ri = R2 × (Fraction of code shared between pi and p2)

The fraction of code shared between paths is estimated statistically by injecting faults

in paths for which reliability is unknown (e.g. path p3). For example: in Figure 6.4, the

first injected fault causes the test cases running through paths p2, p3, and p4 to fail;

whereas the second injected fault fails test case running through path p3. If several such

single fault (first order) mutants are generated, and are tested against the test cases,

then the fraction of code shared between paths pi and p2 may be estimated by:

Fraction of code shared between pi and p2 =
Fi2
F22

where, Fi2 is number of times test cases running through path pi has failed, given

that a fault was induced in path p2; and F22 is number of times test cases running

through path p2 has failed, given that a fault was induced in path p2.

In real life applications though, an un-verified path may share code with several

other verified paths, and may even form cycles. To address such issues, a systematic

way to estimate the fraction of code shared among paths and the software reliability is

described through a pseudocode (Section 6.2.3.2 on the next page)

6. Quantification of software reliability / 78

6.2.3.2 Pseudocode of the approach

1. let T = {t1, t2, · · · tN} be the set of N generated test cases, where ti represents an

unique path pi in the program. And let adequacy(T) represent the adequacy of

the test cases T calculated using Equation (5.4) on page 69.

2. let Vi represent the number of times an un-verified test case ti in T kills a mutant,

given that a fault is induced in the path pi.

3. let Ui represent the number of times an un-verified test case ti in T kills mutants,

when a fault is induced in the path pi.

4. let M be the set of mutants generated for the program.

5. let Im represent the set of un-verified test case indices in T,

which can kill the mutant m.

6. let Fi represent the fraction of code the path pi shares with other verified paths.

7. for each mutant m in M :

(a) Im = φ

(b) for each un-verified test case ti in T :

if ti kills the mutant m then:

Ui ← Ui + 1

Im ← Im ∪ {i}

(c) if Im = φ then

ignore the mutant m and continue with next mutant in step− 7.

6. Quantification of software reliability / 79

else if ∃ t in T such that t is a verified test case and kills the mutant m

then

∀i in Im :

Vi ← Vi + 1

end if

8. Fi =



1 if the path pi is verified, and meets all properties and invariants.

Vi
Ui

if the path pi is un-verified, but meets all properties and invariants

and Ui > 0

0 if the path pi is un-verified and Ui = 0

or

if the path pi violates any of the properties/invariants.

9. Reliability =



adequecy(T)×

N∑
i=1

Fi

N

(if all paths are equally likeley to be executed)

adequecy(T)×

N∑
i=1

(Fi × Oi)

N

(if the path pi has the probabilityOi of execution

i.e. the operational profile)

6. Quantification of software reliability / 80

6.3 Theoretical results

The three approaches described in Sections 6.2.1 to 6.2.3 on pages 74–76 provides a

framework for assessing software failure probability to support the licensing process.

When little or no information on the operation profile of the software is available (e.g.

during commissioning of a new plant). The proposed approaches can be adopted for

initial software reliability estimation.

Along with the reliability estimate, it is equally important to understand on what

factors the estimated reliability depends on. Hence, if P represents the number of

verified test cases, and assuming that all paths of the software are equally likely to

be executed, then:

Reliability = adequacy(T)×

N∑
i=1

Fi

N

= adequacy(T)×


P +

N−P∑
i=1

Fi

N



= adequacy(T)×


P

N
+

N−P∑
i=1

Fi × (N− P)

(N− P)×N



= adequacy(T)×
(
x+ y× (N− P)

N

)

= adequacy(T)×
(
x+ y×

(
1−

P

N

))

= adequacy(T)× (x+ y× (1− x))

= adequacy(T)× (x+ y− xy) (6.3)

6. Quantification of software reliability / 81

6.3.1 Factors affecting the estimated reliability

The Equation (6.3) on the previous page represents the estimated software reliability,

which is a function of three variables: (i) adequacy(T), the test adequacy; (ii) x,

the fraction of verified test cases; and (iii) y, the fraction of code shared between

(N − P) un-verified paths and P verified paths, which is an indication of the software

cohesion/reusability. The adequacy(T), x, and y values are in range [0, 1].

The case where P = N or x = 1, implies that all the given test cases have been

verified and there are no un-verified paths left (i.e. y = 0), hence Reliability =

adequacy(T).

6.3.2 Achieving target reliability

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5
 0.55

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1F
ra

ct
io

n
of

 c
od

e
sh

ar
ed

 b
et

w
ee

n
ve

rif
ie

d
an

d
un

-v
er

ifi
ed

 p
at

hs
 (

y)

Fraction of verified test cases (x)

Reliability
0.05
0.10
0.15

0.20
0.25
0.30

0.35
0.40
0.45

0.50
0.55
0.60

0.65
0.70
0.75

0.80
0.85
0.90

0.95
0.98
0.99

Figure 6.5: Contour graph showing the combination of x and y for various reliability values
(0.05-0.99), when test adequacy is 0.99.

The Equation (6.3) on the previous page helps in choosing the combination of x and y

6. Quantification of software reliability / 82

values required to achieve target reliability (Figure 6.5 on the previous page). For a given

reliability, as x increases, the requirement for y decreases. The decrease in required

value of y exhibits linear to exponential behavior as the target reliability increases, and

becomes a step function as Reliability → adequacy(T) and x → 1 (Figure 6.5 on the

previous page). From the Equation (6.3) on page 80 and Figure 6.5 on the previous page,

it can be seen that test adequacy is the major factor affecting software reliability.

6.3.3 Properties of the software

For software with high test adequacy (as required by most of the safety applications),

the values of x and y help in understanding some properties of the software, and in

making further recommendations to the development/testing team. For example:

1. When x ≈ 0 and y ≈ 0:

Almost no verification has been carried out for the software. Hence, rigorous

software verification must be recommended for such systems.

2. When x ≈ 0 and y ≈ 1:

The software has very high reusability. Though, the estimated reliability seems

to be high, to improve the confidence on the reliability estimate, more software

verification must be recommended for such systems.

3. When x ≈ 1 and y ≈ 0:

Nearly all the generated paths have been verified, and very few groups of un-

verified paths have been left out, which do not share much code with the verified

paths.

4. When x ≈ 1 and y ≈ 1:

An ideal scenario where almost all the generated paths have been verified. Few

small groups of un-verified paths have been left out, which share most of code

with the verified paths.

The values of x and y contribute equally to the estimated reliability. However,

achieving 100% verification (i.e. x = 1) could be difficult, as it requires a true test

6. Quantification of software reliability / 83

oracle. The value of y may be improved by reusing verified code. Hence, achieving high

reliability for software with high reusability is relatively easier.

6.4 Results, discussions, and critical review

This chapter has proposed three approaches to estimate software reliability, and a

method to improve software reliability to meet target reliability. However, it is a well

known fact that software reliability of 100% can never be achieved; i.e. if the proposed

approaches estimate the software reliability as 1, it only indicates that: the set of test

cases which has resulted in 100% test coverage and mutation score = 1, has been

verified; which implies that the software has very high reliability (≈ 1). Hence, as

no faults are found in the software after running N test cases, then:

The failure probability of software <
1
N

(6.4)

The Equation (6.4) represents the failure probability of software (without

considering any confidence level); for example: if 105 test cases with test adequacy

= 1 are generated and verified; then, the failure probability of the software must be less

than 1 in 105 (ie : < 10−5).

However, it is important to provide a statistical confidence level on the estimated

reliability. Many researchers have suggested statistical methods to elicit effective sample

size (i.e. number of test cases in the present context) to attain certain confidence

level [219–222]. The Wilks criteria [221] (Figure 6.6 on the next page) provides a

logical procedure to arrive at the sample size at different statistical confidence levels.

It suggests: to get 10−5 probability of failure with 95% confidence level; perform N

experiments such that at least one experiment output falls in the failure domain Ω with

a probability of β (the confidence level = 95%).

Therefore:

• If the probability that a single experiment output will fail to fall in Ω is γ.

• Then, the probability that all N experimental outputs fail to fall in Ω is γN.

6. Quantification of software reliability / 84

Ω

1 − γγ

State space

Figure 6.6: Wilks criteria (Here γ indicates the probability that a single experiment output will not
fall in the failure domain (Ω))

• And, the probability that at least 1 experiment output is in Ω will be 1− γN.

Then:

β = 1 − γN

γN = 1 − β

N log (γ) = log (1 − β)

N =
log (1− β)

log (γ)

N =
log (1 − 0.95)
log (1 − 10−5)

≈ 3× 105 test cases

Hence, at least 3 × 105 unique test cases have to be generated and verified (Table 5.2

on page 70) for all the case studies to gain 95% confidence level on the reliability

estimate of probability of software failure < 10−5. The confidence level may be further

improved by:

1. Increasing the number of unique test cases.

2. Improving the effectiveness of the mutation testing by using good number of

mutant operators which can induce realistic faults into the software.

6. Quantification of software reliability / 85

3. Reducing the uncertainty in mutation score calculation by detecting equivalent

mutants correctly.

Considering the fact that all safety-critical software undergo rigorous testing and

verification to ensure correctness; the proposed approach is suitable for any safety-

critical software.

6.5 Summary of results

This chapter shows how results of software testing can be used to estimate software

reliability. The main observations of the study are:

1. The test adequacy is the major factor in determining the software reliability in

systems related to safety.

2. The estimated software reliability is a function of test adequacy (adequacy(T)),

the amount of verification carried out (x), and the amount of verified code reused

(y).

3. For a given software reliability target, as the value of x increases, the requirement

for y decreases. The decrease in required value of y exhibits linear to exponential

behavior as the target reliability increases, and becomes a step function as the

Reliability→ adequacy(T) and x→ 1.

4. The proposed approach re-iterates the fact that: achieving high reliability for

software with high reusability is relatively easier.

5. For software with high test adequacy, values of x, y may give some insights on

properties of the software.

6. The probability of software failure in the case studies have been found to be lesser

than 10−5 for a random input from the input domain.

7
Some properties of software reliability

This chapter attempts to generalize the following relationships, observed in the case

studies using mutation based testing: (i) Relationship between software reliability and

number of faults in the software, (ii) Relationship between software reliability and

results of static/dynamic analysis, (iii) Relationship between software reliability and

safety. In the current study, for each case study, 7500 mutants (500 mutants for each

faults ranging from 1 to 15 in number) are generated randomly from Tables B.1 to B.2

on pages 109–110. And the reliability, warnings/errors during static/dynamic analysis,

impact on safety of the mutants are analyzed.

The current study uses the approach based on Section 6.2.1 on page 74 to study the

above properties, as the model (the test oracle) built for the current study is a true

oracle, and no failures were found during software testing. Also, as the approach in

Section 6.2.1 on page 74 is practical and easier to use when compared to other methods

proposed in the current study, it is likley to be adopted to quantify real life software.

7.1 Software reliability vs. number of faults in the software

In literature, lot of methods has been proposed to estimate number of faults/defects

remaining in the software [223–227], from which one may estimate the software

reliability. This section aims to study whether the number of faults is a good indicator

of software reliability in safety-critical systems.

For each mutant in all the case studies, the software reliability is estimated, and

relationship between the average estimated software reliability vs. defect-density/the

86

7. Some properties of software reliability / 87

number of faults induced in the software are plotted. The results (Figure 7.1 on the next

page) indicate a broad gap between ±σ limits of estimated reliability in the results of

defect density vs. the software reliability, for all the case studies combined. Similarly,

the results of number of faults vs. the software reliability in 7500 mutants (Figures 7.2

to 7.4 on pages 89–91) indicate: though, on an average the software reliability decreases

exponentially wrt. the number of faults in the software, it may not be a good indicator

of software reliability. This can be concluded by the broad gap of ±1σ limit of estimated

reliability results. This ±1σ gap was found to be broad in all the case studies; and

the gap seems to reduce only when the reliability → 0, which is not a characteristic of

safety-critical software.

As the standard deviation of estimated reliability in the present study was found

to be high (Figures 7.1 to 7.4 on pages 88–91), it indicates that the reliability depends

upon the severity of faults rather than the number of faults. Hence, reliability estimates

based only on the defect-density/number of faults present in the software is likely to be

inaccurate for safety-critical software.

7.2 Software reliability vs. results of static, dynamic analysis

Static and dynamic analyses are an important part of V&V of software. Static analysis

analyzes the software without executing it, and reports warnings and errors; whereas

dynamic analysis executes the program with code instrumentation or in a controlled

environment, and reports errors/warnings during the program execution.

To understand if there exists any relationship between static/dynamic analysis and

the estimated reliability, for all the 7500 mutants in each cases study; the average of

warnings during static analysis using splint [194], clang [192], and cppcheck [193];

and errors/warnings during dynamic analysis using Valgrind [199] and Electric-Fence

[200] are analyzed. The results (Figures 7.5 to 7.6 on page 92) indicate that the

warnings/errors found during dynamic analysis decreases exponentially as the reliability

increases. However, no significant relationship could be found between static analysis

and the estimated software reliability.

7. Some properties of software reliability / 88

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

E
s
ti
m

a
te

d
 r

e
lia

b
ili

ty

Defect density (Faults/KLOC)

min (1, Average + Standard deviation)

Average reliability

max (0, Average - Standard deviation)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

E
s
ti
m

a
te

d
 r

e
lia

b
ili

ty

Defect density (Faults/KLOC)

min (1, Average + Standard deviation)

Average reliability

max (0, Average - Standard deviation)

Figure 7.1: Estimated reliability vs. the defect density (in KLOC) for all the case studies. As the
software under test is ≈ 1 KLOC, the results for defect density < 1 Defects/KLOC cannot be plotted.
(The upper and lower bounds indicate the ± 1σ limit, and the software reliability is in the range
[0,1])

7. Some properties of software reliability / 89

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
s
ti
m

a
te

d
 r

e
lia

b
ili

ty

Number of faults induced

min (1, Average + Standard deviation)

Average reliability of 500 mutants

Exponential fit : f(x) = 1.00 * exp (-x * 0.15)

max (0, Average - Standard deviation)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
s
ti
m

a
te

d
 r

e
lia

b
ili

ty

Number of faults induced

min (1, Average + Standard deviation)

Average reliability of 500 mutants

Exponential fit : f(x) = 0.89 * exp (-x * 0.10)

max (0, Average - Standard deviation)

Figure 7.2: Estimated reliability vs. the number of induced faults − for FSH and RSU (The upper
and lower bounds indicate the ± 1σ limit, and the software reliability is in the range [0,1])

7. Some properties of software reliability / 90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
s
ti
m

a
te

d
 r

e
lia

b
ili

ty

Number of faults induced

min (1, Average + Standard deviation)

Average reliability of 500 mutants

Exponential fit : f(x) = 1.05 * exp (-x * 0.18)

max (0, Average - Standard deviation)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
s
ti
m

a
te

d
 r

e
lia

b
ili

ty

Number of faults induced

min (1, Average + Standard deviation)

Average reliability of 500 mutants

Exponential fit : f(x) = 1.14 * exp (-x * 0.23)

max (0, Average - Standard deviation)

Figure 7.3: Estimated reliability vs. the number of induced faults − for SGTLD and CTMS (The
upper and lower bounds indicate the ± 1σ limit, and the software reliability is in the range [0,1])

7. Some properties of software reliability / 91

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
s
ti
m

a
te

d
 r

e
lia

b
ili

ty

Number of faults induced

min (1, Average + Standard deviation)

Average reliability of 500 mutants

Exponential fit : f(x) = 0.83 * exp (-x * 0.10)

max (0, Average - Standard deviation)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

E
s
ti
m

a
te

d
 r

e
lia

b
ili

ty

Number of faults induced

min (1, Average + Standard deviation)

Average reliability of 500 mutants

Exponential fit : f(x) = 0.97 * exp (-x * 0.20)

max (0, Average - Standard deviation)

Figure 7.4: Estimated reliability vs. the number of induced faults − for GES and SGDHR (The
upper and lower bounds indicate the ± 1σ limit, and the software reliability is in the range [0,1])

7. Some properties of software reliability / 92

 6.7

 6.8

 6.9

 7

 7.1

 7.2

 7.3

 7.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
w

a
rn

in
g

s
 o

b
s
e

rv
e

d
 d

u
ri
n

g
 s

ta
ti
c
 a

n
a

ly
s
is

Estimated reliability

Figure 7.5: Estimated reliability vs. the number of warnings found during static analysis for the
all case studies

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
w

a
rn

in
g

s
/e

rr
o

rs
 o

b
s
e

rv
e

d
 d

u
ri
n

g
 d

y
n

a
m

ic
 a

n
a

ly
s
is

Estimated reliability

Exponential fit : f(x) = 17652.21 * exp (-x * 2.24)

Average warnings/errors observed during dynamic analysis

Figure 7.6: Estimated reliability vs. the number of errors found at dynamic analysis for the all case
studies

7. Some properties of software reliability / 93

7.3 Software reliability vs. safety

Software safety can be defined as [228]: "ensuring that software will execute within a

system context without resulting in unacceptable risk", and is the most important aspect

of a safety-critical system. However, the relationship between software reliability and

safety has not been extensively studied in the literature. To establish a relationship

between the two, for each mutant generated in Section 7.1 on page 86, a parameter

called safety-indicator defined as:

Safety indicator =
|Tw|

|Ew|
(7.1)

where Tw is the weighted safety vector observed while testing, and Ew is the weighted

safety vector expected as per the software requirements using the executable semi-

formal model of the system written in Erlang programming language (Section 4.4.1 on

page 43). A weighted safety vector (Sw) indicates the amount of safety provided by the

software, and is defined as:

Sw = (s1 ×w1, s2 ×w2, s3 ×w3 , , sn ×wn), where:

si is the number of times ith output has led to a safety action, and

wi is the weight associated with the safety-critical nature of the output i


(7.2)

For ideal safety-critical software, the safety indicator should be 1. If it is < 1, then

the system provides lesser safety than specified in the software requirement which is a

potentially dangerous situation. If the safety indicator is > 1, it indicates that the system

often shows spurious failures, and provides more safety than required.

For each mutant in the all case studies, the safety indicator (Equation (7.1)) and

its corresponding estimated software reliability based on Section 6.2.1 on page 74 is

estimated and plotted. To plot the relationship between software reliability and safety,

the software reliability is averaged at every 0.2 intervals of safety (indicated by the blue

line in Figure 7.7 on page 95). As an ideal safety-critical software has safety = 1 and

7. Some properties of software reliability / 94

reliability = 1 (indicated by the yellow colored line in Figure 7.7 on the next page), it is

also shown along with the experimental results. Also, as the magnitude alone cannot

distinguish between two vectors, the angle between Tw and Ew defined as:

Angle between Tw and Ew = cos−1


∑

(Ti × Ei)√∑
(Ti)

2 ×
√∑

(Ei)
2

 (7.3)

is also indicated (by color) for each mutant (Figure 7.7 on the next page). The angle

between the two vectors is in range [0◦, 90◦]; and indicates the angular similarity

between them (aka. the cosine similarity), where 0◦ indicates that both test output

and expected output overlap with each other, whereas 90◦ indicates that both are

perpendicular to each other. The obtained results (Figure 7.7 on the next page) indicate

that: as the software reliability increases the safety also increases as reliability → 1,

hence by improving reliability, safety can be improved. However, as the spurious failures

increase, the reliability decreases. Hence, improvement in safety does not guarantee

improvement in reliability.

7.4 Summary of results

The study on mutant programs of the case study has revealed the following results:

1. Reliability estimates based on number of faults present in the software is likely to

be inaccurate for safety-critical software.

2. Safety-critical software should not show any warnings or errors during dynamic

analysis. In the present study, it was found that: the average warnings/errors

observed during dynamic analysis decreases exponentially as the reliability

increases.

3. However, no conclusive relationship was found between software reliability and

warnings observed during static analysis.

4. For safety-critical software, the required safety can be achieved by improving the

reliability; however vice-versa is not always true.

7. Some properties of software reliability / 95

 0

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9 1

 0
 0

.1
 0

.2
 0

.3
 0

.4
 0

.5
 0

.6
 0

.7
 0

.8
 0

.9
 1

 1
.1

 1
.2

 1
.3

 1
.4

 1
.5

 1
.6

 1
.7

 1
.8

 1
.9

 2
 2

.1

Estimated reliability

S
af

et
y

in
di

ca
to

r

T
he

or
et

ic
al

 v
al

ue
 (

re
lia

bi
lit

y
=

 1
, s

af
et

y
=

 1
)

A
ve

ra
ge

 o
f e

xp
er

im
en

ta
l v

al
ue

s

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

Angle between expected output and test output

Fi
gu

re
7.

7:
Es

ti
m

at
ed

re
lia

bi
lit

y
vs

.
th

e
sa

fe
ty

in
di

ca
to

r,
fo

r
al

lt
he

ca
se

st
ud

ie
s

8
Summary and open problems

The present work aims to quantify software reliability, and to study properties of

software reliability in safety-critical systems. The contributions, observations, and future

scope of present study are summarized below:

8.1 Contributions

The present study makes the following contributions:

1. Empirical results on characteristics of mutant programs during mutation testing

are presented. Using which, a systematic method to prioritize unkilled mutants is

proposed (Section 5.5.1 on page 52).

2. A method for detecting likely equivalent mutants during mutation testing is

proposed (Section 5.5.2 on page 59).

3. An intuitive and conservative approach to determine software test adequacy in

safety-critical systems is proposed (Section 5.6 on page 69).

4. A hybrid approach using software verification and mutation testing to quantify

software reliability in safety-critical systems is proposed (Section 6.2 on page 74).

5. Theoretical results on factors that may affect the software reliability are presented

(Section 6.3.1 on page 81).

6. Empirical results on relationship between software reliability and safety in safety-

critical systems are presented (Section 7.3 on page 93).

96

8. Summary and open problems / 97

8.2 Observations

The following observations are made during the study:

1. Use of single control coverage criterion alone may not be sufficient to test safety-

critical software (Section 2.4 on page 22).

2. For software with high test adequacy, the unkilled mutants have been found to

have lesser variation in their characteristics when compared to the killed mutants

(Section 5.5.1 on page 52).

3. The estimated software reliability is a function of test adequacy (adequacy(T)),

the amount of verification carried out (x), and the amount of verified code reused

(y) (Section 6.3 on page 80).

4. The test adequacy is the major factor in determining the software reliability in

systems related to safety (Section 6.3.2 on page 81).

5. For a given software reliability, as the value of x increases, the requirement for

y decreases. The decrease in required value of y exhibits linear to exponential

behavior as the target reliability increases, and becomes a step function as

Reliability→ adequacy(T) and x→ 1 (Section 6.3.2 on page 81).

6. Achieving high reliability for software with high reusability is relatively easier

(Section 6.3.3 on page 82).

7. For software with high test adequacy, values of x and y may give insights on the

properties of the software which may help in making further recommendations to

the development/testing team (Section 6.3.3 on page 82).

8. Reliability estimates based on number of faults present in the software is likely to

be inaccurate for safety-critical software (Section 7.1 on page 86).

9. The average warnings/errors observed during dynamic analysis decreases

exponentially as the reliability increases. However, no conclusive relationship was

found between software reliability and warnings observed during static analysis

(Section 7.2 on page 87).

8. Summary and open problems / 98

10. For safety-critical software, the required safety can be achieved by improving the

reliability; however vice-versa is not always true (Section 7.3 on page 93).

8.3 Open problems

The following scope exists for further work:

1. Enhancing the proposed testing techniques:

The proposed testing techniques may be further enhanced by making it change

aware. As software evolves over time or is recfactored, research in change aware

testing can save time and resources.

2. Software reliability issues on multi threaded/core safety systems:

The present study has focused on single-threaded software running on single core

processors. However, future safety systems are likely to be powerful and may

run on multi-core/threaded environment. Thus, issues pertaining to deadlocks,

priority inversion, etc. have to be addressed; and their implication on safety of the

system must be studied.

3. Compiler verification:

Compiler verification is one of the grand challenges in computer science and offers

great scope for research, as trusted compilers are must for safety applications.

Embedded systems often use optimized compilers; hence a lot of challenges and

research scope exist in verification of optimizing compilers.

4. Operating system verification:

Verification of Operating system is a complex and challenging task. Research areas

such as Just Enough Operating System (JEOS) are interesting and are likely to find

practical applications in safety-critical industries.

5. HMI/ Human factors in plant operations:

Human error is one of the major reasons for accidents in safety applications,

and hence must be modeled accurately for Probabilistic Risk Assessment (PRA).

8. Summary and open problems / 99

Research to reduce human errors in software based systems is one of the important

areas of research.

6. Inclusion of digital I&C systems’ reliability into PSA of nuclear reactors:

Calculating system reliability of digital I&C systems using the software and

hardware reliability is still an ongoing topic of research. And scope for research

exist to integrate the I&C system reliability into PSA of a nuclear reactor.

8.4 Conclusion

There is an urgent need to demonstrate the safety and reliability of computer based

systems in nuclear plants. The lack of commonly accepted methods on the assessment

of software reliability may hinder the licensing process of such safety systems.

The methods and analysis presented in this thesis demonstrate the use of software

testing to arrive at an estimate of software reliability. Also, the results obtained in this

thesis gives insight on the dynamics of building safe and reliable software.

The proposed approaches could be used by safety-critical software developers to

improve the software reliability. Further, the regulators may also use the techniques to

verify reliability, safety, and dependability claims.

This thesis has proposed a set of methods to quantify software reliability and

presented results on properties of software reliability for safety-critical systems. The

present study can be enhanced by improving the proposed testing techniques. Further

scope exists in issues related to multi-core/threaded safety applications, system software

verification (compiler and operating system), human factors in plant operations, and

inclusion of system reliability of digital I&C systems in PSA studies of nuclear reactors.

Part III

Appendices

A
Semi-formal software specification

As mentioned in Section 5.4.2 on page 50, Drakon [184] notations are used in the present

study to build test oracle. Below is the list drakon notations used in the present work:

A.1 List of Drakon notations

add

End

A, B

A + B

Figure A.1: An example of a function "add", returning the sum of its parameters: A and B

function_call (Arguments)

Figure A.2: A function call

Inline comment Standalone comment

Figure A.3: Inline and standalone comments

101

A. Semi-formal software specification / 102

Decision Box
YES

NO

Action Box

Variable

Value_1 Value_2 Value_3

Action_1 Action_2 Action_3

(a) (b)

Figure A.4: Control flow: (a) decision box, (b) switch case

Function name

End

Task 1

Task 2

Task 2 Task 3

Task 3

Function Arguments

Action 1 Action 2 Action 3

Figure A.5: An example of branches. The order of execution is Task 1,2,3

Although, very few notations in Drakon are suitable for Erlang; the flexibility

in specification is achieved through functional programming constructs of Erlang

programming language such as: list comprehension, map, filter, fold, recursions, etc.

A. Semi-formal software specification / 103

Doubled_Array = [X*2 || X <- Array] Greater_Than_Zero_Values = [X || X <- Array, X > 0]

(a) (b)

Figure A.6: Map and filter using list comprehension: (a) Map and (b) Filter

A.2 An example of semi-formal specification

The graphical semi-formal specification in Drakon is converted to the Erlang [185]

programming language, which acts as an executable specification. Below is an example

of FSHS specification:

main

End

[Gate_Open_Args, Gate_Close_Args, Heater_Control_Args]

FSEP_Gate_Should_be_Open
YES

NO

Todo =

 [open_FSEP_gate_valve]

 ++

 do_heater_control (Heater_Control_Args)

FSEP_Gate_Should_be_Closed
YES

NO

Todo = [

close_FSEP_gate_valve

]

Todo

Todo = []

FSEP_Gate_Should_be_Open = should_open_FSEP_gate_valve (Gate_Open_Args),

FSEP_Gate_Should_be_Closed = should_close_FSEP_gate_valve (Gate_Close_Args)

A. Semi-formal software specification / 104

should_open_FSEP_gate_valve

End

[Signals_From_DDCS = [_Remote_Selection_Switch

 _FSTC_Electrical_Connectors_are_Engaged

 _FSTC_Pneumatic_Connectors_are_Connected

 _TCC_Aligned_at_FSEP

 _FSTC_Coupling_Plate_is_Coupled

 _FSTC_Indexing_Mechanism_is_Locked

 _All_FSTC_Drives_are_Switched_OFF

 _Inter_Space_Flushing_Between_FSTC_and_FSEP_Completed

 _FSTC_Gate_Valve_Open_Status]

Signals_From_Console = [_Operator_Selector_Switch_Position_in_Console

 _FSEP_Gate_Valve_Open_Push_Button_in_Console]

Signals_From_Panel = [_Operator_Selector_Switch_Position_in_Panel

 _FSEP_Gate_Valve_Open_Push_Button_in_Panel]

Signals_From_LCC = [_Operator_Selector_Switch_Position_in_LCC

 _FSEP_Gate_Valve_Open_Push_Button_in_LCC]

_FSEP_Signals = [Limit_Switch_ON_for_FSEP_Gate_Valve_Open

 FSEP_Gate_Valve_Close_Command]]

Result = (

 all_are_true (Signals_From_DDCS)

 and

 any_one_is_true ([

 all_are_true (Signals_From_Console),

 all_are_true (Signals_From_Panel),

 all_are_true (Signals_From_LCC)

])

 and

 not Limit_Switch_ON_for_FSEP_Gate_Valve_Open

 and

 not FSEP_Gate_Valve_Close_Command

)

Result

A. Semi-formal software specification / 105

should_close_FSEP_gate_valve

End

[Remote_Selection_Switch_in_LCP_at_HCR_Position

CTM_Gripper_Hoist_Above_Elevation_34000

Limit_Switch_for_Close_Status_of_FSEP_Gate_Valve

Signals_From_Console = [_Operator_Selector_Switch_Position_in_Console

 _FSEP_Gate_Valve_Close_Push_Button_in_Console]

Signals_From_Panel = [_Operator_Selector_Switch_Position_in_Panel

 _FSEP_Gate_Valve_Close_Push_Button_in_Panel]

Signals_From_LCC = [_Operator_Selector_Switch_Position_in_LCC

 _FSEP_Gate_Valve_Close_Push_Button_in_LCC]

FSEP_Gate_Valve_Open_Command]

Result = (

 Remote_Selection_Switch_in_LCP_at_HCR_Position

 and

 CTM_Gripper_Hoist_Above_Elevation_34000

 and

 not Limit_Switch_for_Close_Status_of_FSEP_Gate_Valve

 and

 any_one_is_true ([

 all_are_true (Signals_From_Console),

 all_are_true (Signals_From_Panel),

 all_are_true (Signals_From_LCC)

])

 and

 not FSEP_Gate_Valve_Open_Command

)

Result

A. Semi-formal software specification / 106

do_heater_control

End

[_Vessel_1_Thermocouples = [Invessel_1_TCs, Outvessel_1_TCs]

_Vessel_2_Thermocouples = [Invessel_2_TCs, Outvessel_2_TCs]

_Vessel_3_Thermocouples = [Invessel_3_TCs, Outvessel_3_TCs]

_Heater_On_Signals = [ON_1, ON_2, ON_3]

_Heater_Off_Signals = [OFF_1, OFF_2, OFF_3]

_Trip_Signals = [Trip_1, Trip_2, Trip_3]

Soft_PID_Constants = [_PID_1, _PID_2, _PID_3]

Heater_Set_Points = [_SP_1, _SP_2, _SP_3]]

Average_Temperature_of_Vessel_1 = average (

 validate_thermocouple_set (Invessel_1_TCs) ++

 validate_thermocouple_set (Outvessel_1_TCs)

),

Average_Temperature_of_Vessel_2 = average (

 validate_thermocouple_set (Invessel_2_TCs) ++

 validate_thermocouple_set (Outvessel_2_TCs)

),

Average_Temperature_of_Vessel_3 = average (

 validate_thermocouple_set (Invessel_3_TCs) ++

 validate_thermocouple_set (Outvessel_3_TCs)

)

Control_Vessel_1_Heater = requires_heater_control (

 ON_1, OFF_1,

 Trip_1, Average_Temperature_of_Vessel_1

),

Control_Vessel_2_Heater = requires_heater_control (

 ON_2, OFF_2,

 Trip_2, Average_Temperature_of_Vessel_2

),

Control_Vessel_3_Heater = requires_heater_control (

 ON_3, OFF_3,

 Trip_3, Average_Temperature_of_Vessel_3

)

Result

Result = [

 {Heater_ID, Heater_Control, Heater_Set_Point, Soft_PID_Constant} ||

 {

 {Heater_ID, Heater_Control},

 Heater_Set_Point,

 Soft_PID_Constant

 } <-

 lists:zip3 (Heater_Controls, Heater_Set_Points, Soft_PID_Constants)

]

Heater_Controls = [

 {1, Control_Vessel_1_Heater},

 {2, Control_Vessel_2_Heater},

 {3, Control_Vessel_3_Heater}

]

A. Semi-formal software specification / 107

average

End

List

Average = lists:sum(List) / length(List)

Average

length (List) =:= 0
YES

NO

Average = 0

validate_thermocouple_set

End

[Current_TCs = [_C1, _C2, _C3, _C4, _C5, _C6]

Previous_TCs = [_P1, _P2, _P3, _P4, _P5, _P6]]

Min = lists:min (Current_TCs),

Max = lists:max (Current_TCs)

Valid_Thermocouples = [Current_Value ||

 {Current_Value, Previous_Value} <- lists:zip (Current_TCs, Previous_TCs),

 Current_Value > 0.0, Current_Value < 500.0,

 abs (Current_Value - Previous_Value) < 5.0

]

Number_of_Thermocouples_Close_to_Average > 4
NO

YES

[]Valid_Thermocouples

Average_Temperature = (lists:sum (Current_TCs) - Max - Min) / 4.0

Number_of_Thermocouples_Close_to_Average = length (

 [

 TC || TC <- Valid_Thermocouples,

 abs (TC - Average_Temperature) < 10.0

]

)

A. Semi-formal software specification / 108

requires_heater_control

End

Heater_is_On_Command

Heater_is_Off_Command

Trip_Check_Back

Average_Temperature_of_Vessel

Result = (

 Heater_is_On_Command

 and

 (not Heater_is_Off_Command)

 and

 (not Trip_Check_Back)

 and

 (Average_Temperature_of_Vessel < 593.0)

 and

 (not (Average_Temperature_of_Vessel < 603.0))

)

Result

all_are_true

End

List

length ([X || X <- List, X =:= true]) =:= length(List)

any_one_is_true

End

List

length ([X || X <- List, X =:= true]) > 0

B
List of mutant operators

Below is the list of mutant operators used in the present study:

Substring Mutated to (separated by ,) Remarks

1 < !=, >, <=, >=, == , = Relational operators
2 > !=, <, <=, >=, ==, = "
3 <= !=, <, >, >=, == , = "
4 >= !=, <, <=, >, == , = "
5 == !=, <, >, <=, >= , = "
6 != ==, <, >, <=, >= , = "
7 = = -, == , = 0 *, = ∼ , = ! Assignment operator
8 = = 0; //, = NULL; // "
9 + -, *, /, % Arithmetic operators

10 - +, *, /, % "
11 * +, -, /, % "
12 / %, *, +, - "
13 % /, +, -, * "
14 + 1 - 1, + 0, + 2, - 2 Increment / Decrement
15 - 1 + 1, + 0, + 2, - 2 "
16 += 1 -= 2, -= 1, += 0, += 2 "
17 -= 1 -= 2, += 0, += 1, += 2 "
18 ++ −− "
19 −− ++ "
20 ++; −−;, +=2;, -=2; ,; "
21 ++) −−), +=2), -=2) "
22 −−; ++;, +=2;, -=2; ,; "
23 −−) ++), +=2), -=2) "
24 & |, ∧ Bit-wise operators
25 | &, ∧ "
26 ∧ &, | "
27 ∼ !, ∼∼ "
28 ! ∼, !! "
29 >> << "
30 << >> "
31 << 1 << -1, << 0, << 2 "
32 >> 1 >> -1, >> 0, >> 2 "
33 && &, ||, && ! , | Logical operators
34 || |, &&, || !, & "
35 true / false false / true "
36 if (if (!, if (∼, if (true ||, if (false && "
37 else else if (false) "
38 while (while (!, while (∼, while (false && "

Table B.1: List of mutant operators used in mutation testing - I

109

B. List of mutant operators / 110

Substring Mutated to (seperated by ,) Remarks

39 break; / continue; { ; } Replaces with an empty block
40 return return 0; //, return 1; // Modifies function’s return value
41 return return -1; //, return NULL; // "
42 return return -1 * , return 2*, return ! "
43 0x0 0x1, 0x5, 0xA, 0xF Mutates bits in constants
44 0x1 0x0, 0x5, 0xA, 0xF (0x0 = 0000
45 0x5 0x0, 0x1, 0xA, 0xF 0x5 = 0101
46 0xA 0x0, 0x1, 0x5, 0xF 0xA = 1010
47 0xF 0x0, 0x1, 0x5, 0xA 0xF = 1111)
48 0x00 0x55, 0xAA, 0xFF "
49 0x55 0x00, 0xAA, 0xFF "
50 0xAA 0x00, 0x55, 0xFF "
51 0xFF 0x00, 0x55, 0xAA "
52 [[-1 +, [1 +, [0 * Mutates array index
53 ((!, (∼, (-1 *, (2 *, (0 *, (1 +, (-1 + Mutates first argument of a function
54 , ,∼, , !, ,0*, ,-1*, ,2* Mutates function arguments,

,1 +, ,-1 + array and structure initializations.
55) *0), *-1), *2), + 1), - 1) Mutates last argument of a function
56 ? && false ?, || true ? Ternitary operator
57 unsigned / signed signed / unsigned Truncates data
58 int short int, char "
59 long int, short int, char "
60 float / double int "

Table B.2: List of mutant operators used in mutation testing - II

C
Data for PCA of mutant characteristics

The data for Principal Component Analysis (PCA) (Figures 5.13 to 5.15 on pages 62–64)

of static analysis, dynamic analysis, and coverage impact of mutants for the all case

studies is as follows:

Using Splint
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
456 0 187 1
244 1 105 0

55 2 11 2
14 99 2 3

4 3 2 4
1 4 1 23

1 7

Using Clang
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
766 0 309 0

8 1

Using Cppcheck
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
765 0 303 0

8 1 6 1
1 2

Table C.1: Static analysis of FSHS mutants

111

C. Data for PCA of mutant characteristics / 112

Using Valgrind
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
748 0 309 0

9 1
2 26
2 3102981
1 27
1 172954
1 3199649
1 248067
1 5715
1 136773
1 10000000
1 735
1 36174
1 894604
1 505

(remaining) 2 (avg) 25366

Using Coverage impact
Killed mutants Unkilled mutants

Number of mutants Coverage impact Number of mutants Coverage impact
142 0 289 0

96 35910576 4 4424377
11 152572 4 778293

9 174534 4 4851727
8 1049147 1 6354
6 360 1 500356
6 33116832 1 2308355
6 190715 1 778572
6 33601689 1 345648
5 60885 1 65
5 1009 1 609319
5 9336 1 778533
5 3068
5 37313606
5 33689274

(remaining) 454 (avg) 1076774260

Table C.2: Dynamic analysis of FSHS mutants

C. Data for PCA of mutant characteristics / 113

Using Splint
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
124 1 51 1

99 0 40 0
14 2 3 2

6 99 1 3
3 3 1 5

1 9

Using Clang
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
243 0 97 0

3 1

Using Cppcheck
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
225 0 93 0

21 1 4 1

Table C.3: Static analysis of RSU mutants

C. Data for PCA of mutant characteristics / 114

Using Valgrind
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
239 0 96 0

1 10000000 1 9837
1 19477
1 3743
1 4330
1 9837
1 1484
1 11857

Using Coverage impact
Killed mutants Unkilled mutants

Number of mutants Coverage impact Number of mutants Coverage impact
38 1142851 70 0
19 0 3 483771

7 85608 3 586432
6 464309 2 897
5 79215 2 169774
5 467171 2 50053
5 20391 1 847
4 397997 1 693
3 500530 1 29894
3 111234 1 104544
3 299450 1 770
3 352992 1 61116
3 464869 1 616
3 244381 1 34874
3 436231 1 80190

(remaining) 136 (avg) 150239

Table C.4: Dynamic analysis of RSU mutants

C. Data for PCA of mutant characteristics / 115

Using Splint
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
1969 0 800 1
1393 1 346 0

221 2 19 2
67 99 10 3
11 3 5 4

9 4 4 5
4 6 3 12
1 12 2 6

1 13
1 18
1 43
1 9
1 8
1 68

Using Clang
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
3629 0 1195 0

46 1

Using Cppcheck
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
3586 0 1190 0

59 1 5 1
18 2
12 4

Table C.5: Static analysis of SGTLD mutants

C. Data for PCA of mutant characteristics / 116

Using Valgrind
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
3204 0 1195 0

212 1
33 2
12 3

9 2665
6 6
6 78
5 121582
3 121514
3 121598
3 121741
3 121591
3 121644
3 170
3 121658

(remaining) 167 (avg) 171954

Using Coverage impact
Killed mutants Unkilled mutants

Number of mutants Coverage impact Number of mutants Coverage impact
1814 588947843 978 0

178 0 14 24
15 22296 13 18
14 1195204 8 1139348
13 2021908 8 6
13 947086 6 495690
13 704944 6 9
13 9968 5 3
13 14120 5 12
13 6727632 5 48
12 74836 4 7563297
12 1160405 4 2390799
11 4530176 4 2692978
10 2219688 3 12051464
10 238777 3 2269850

(remaining) 1521 (avg) 3197421

Table C.6: Dynamic analysis of SGTLD mutants

C. Data for PCA of mutant characteristics / 117

Using Splint
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
2213 0 1021 1
1666 1 514 0

389 2 67 2
26 99 10 3

6 6 3 7
5 3 2 16
5 5 2 5
4 4 1 4
4 7 1 6
2 11 1 9
1 26 1 8
1 14
1 8

Using Clang
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
4255 0 1623 0

57 1
10 2

1 3

Using Cppcheck
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
4179 0 1597 0

109 1 17 1
32 2 9 2

3 3

Table C.7: Static analysis of CTMS mutants

C. Data for PCA of mutant characteristics / 118

Using Valgrind
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
4235 0 1623 0

55 1
6 3
4 5
3 10000000
3 311002
3 2
3 1010
2 48
1 318
1 310790
1 1370314
1 4
1 1748606
1 9

(remaining) 3 (avg) 102742

Using Coverage impact
Killed mutants Unkilled mutants

Number of mutants Coverage impact Number of mutants Coverage impact
3184 231549497 1413 0

294 0 8 932997
42 1555010 6 975969
15 315736 6 640389
13 66889311 6 273838
13 414350 5 196
13 624763 5 164428
11 12050786 5 15464
11 607208 4 374311
11 33030145 4 155867
11 12658250 4 248
11 422403 4 21054
11 3644278 4 28711
10 751240 4 618613
10 29647851 4 189

(remaining) 663 (avg) 7332209

Table C.8: Dynamic analysis of CTMS mutants

C. Data for PCA of mutant characteristics / 119

Using Splint
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
108 1 97 1

91 0 25 0
8 2 3 2
2 99

Using Clang
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
209 0 125 0

Using Cppcheck
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
209 0 125 0

Table C.9: Static analysis of GES mutants

Using Valgrind
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
209 0 125 0

Using Coverage impact
Killed mutants Unkilled mutants

Number of mutants Coverage impact Number of mutants Coverage impact
96 0 103 0
12 24 14 24
10 12 2 36

7 800 2 72
6 464 1 44
5 216 1 88
5 32 1 80
5 240 1 96
4 64
4 112
4 4
4 504
4 584
4 893
4 897

(remaining) 35 (avg) 238

Table C.10: Dynamic analysis of GES mutants

C. Data for PCA of mutant characteristics / 120

Using Splint
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
364 0 128 1
260 1 43 0

69 2 4 4
3 4 2 5
2 99 1 2
1 3

Using Clang
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
698 0 178 0

1 2

Using Cppcheck
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
697 0 178 0

2 1

Table C.11: Static analysis of SGDHR mutants

Using Valgrind
Killed mutants Unkilled mutants

Number of mutants Warnings Number of mutants Warnings
689 0 178 0

10 1

Using Coverage impact
Killed mutants Unkilled mutants

Number of mutants Coverage impact Number of mutants Coverage impact
188 0 174 0

10 7828390 1 3
6 38779 1 30
6 2766 1 348
6 296552 1 237244
6 36
6 915630
5 131562
5 130977
5 130407
5 237965
5 533088
5 126633
5 87015
5 87108

(remaining) 431 (avg) 141857

Table C.12: Dynamic analysis of SGDHR mutants

References

[1] J. C. Knight, “Safety critical systems: challenges and directions,” in Software
Engineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference
on, pp. 547–550, IEEE, 2002.

[2] “Analysis of launch vehicle failure trends,” tech. rep., Futron Corporation, August
2006.

[3] D. P. Murray and T. L. Hardy, “Developing safety-critical software requirements
for commercial reusable launch vehicles,” tech. rep., Federal Aviation
Administration, Washington, DC, 2009.

[4] M. Lyu, Handbook of Software Reliability Engineering. McGraw-Hill, 1995.

[5] N. G. Leveson, “An investigation of the Therac-25 accidents,” IEEE Computer,
vol. 26, pp. 18–41, 1993.

[6] N. G. Leveson, “The role of software in spacecraft accidents,” AIAA Journal of
Spacecraft and Rockets, vol. 41, pp. 564–575, 2004.

[7] “Patriot missile defense - software problem led to system failure at dhahran,
saudi arabia,” Tech. Rep. IMTEC-92-26, US. Government Accountability Office,
Feb 1992. http://www.gao.gov/assets/220/215614.pdf.

[8] B. Nuseibeh, “Ariane 5: Who dunnit?,” Software, IEEE, vol. 14, pp. 15 –16, may-
june 1997.

[9] D. Halperin, T. Heydt-Benjamin, B. Ransford, S. Clark, B. Defend, W. Morgan,
K. Fu, T. Kohno, and W. Maisel, “Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses,” in Security and
Privacy, 2008. SP 2008. IEEE Symposium on, pp. 129 –142, may 2008.

[10] “Mars global surveyor (MGS) spacecraft loss of contact,” tech. rep., NASA, April
2007.

[11] P. G. Neumann, “Some computer-related disasters and other egregious horrors,”
Aerospace and Electronic Systems Magazine, IEEE, vol. 1, pp. 18 –19, oct. 1986.

[12] S. Rogerson, “The chinook helicopter disaster,” IMIS Journal, vol. 12, 2002.
www.ccsr.cse.dmu.ac.uk/resources/general/ethicol/Ecv12no2.pdf.

[13] G. Slabodkin, “Software glitches leave navy smart ship dead in the water.”
http://gcn.com/articles/1998/07/13/software-glitches-leave-navy-smart-ship-
dead-in-the-water.aspx, Jul 1998. Government Computer News.

121

References / 122

[14] R. Charette, “Software problem blamed for woman’s death in minnesota.”
http://spectrum.ieee.org/riskfactor/computing/it/software-problem-blamed-
for-womans-death-in-minnesota, June 2010. IEEE Spectrum blog.

[15] ANSI/IEEE, “Standard glossary of software engineering terminology,” 1991. STD-
729-1991.

[16] A. P. Mathur, Foundations of Software Testing. Addison-Wesley Professional,
1st ed., 2008.

[17] J. D. Musa, Software Reliability Engineering: More Reliable Software Faster and
Cheaper 2nd Edition. AuthorHouse, 2 ed., Sept. 2004.

[18] D. Hamlet, “Keeping the "engineering" in software engineering,” in Proceedings of
the 10th International Software Quality Week, May 1997.

[19] A. Goel, “Software reliability models: Assumptions, limitations, and
applicability,” Software Engineering, IEEE Transactions on, vol. SE-11, pp. 1411
– 1423, dec. 1985.

[20] A. Wood, “Software reliability growth models: Assumptions vs. reality,” Software
Reliability Engineering, International Symposium on, vol. 0, p. 136, 1997.

[21] N. E. Fenton and M. Neil, “A critique of software defect prediction models,” IEEE
Transactions on Software Engineering, vol. 25, no. 5, pp. 675–689, 1999.

[22] C. Kai-Yuan, H. De-Bin, B. Cheng-Gang, H. Hu, and T. Jing, “Does software
reliability growth behavior follow a non-homogeneous poisson process,”
Information and Software Technology, vol. 50, no. 12, pp. 1232–1247, 2008.

[23] C. Stringfellow and A. A. Andrews, “An empirical method for selecting software
reliability growth models,” Empirical Software Engineering, vol. 7, pp. 319–343,
2002.

[24] C. A. Asad, M. I. Ullah, and M. J.-U. Rehman, “An approach for software reliability
model selection,” in Proceedings of the 28th Annual International Computer
Software and Applications Conference - Volume 01, COMPSAC ’04, (Washington,
DC, USA), pp. 534–539, IEEE Computer Society, 2004.

[25] A. Beckhaus, L. M. Karg, and G. Hanselmann, “Applicability of software reliability
growth modeling in the quality assurance phase of a large business software
vendor,” Computer Software and Applications Conference, Annual International,
vol. 1, pp. 209–215, 2009.

[26] AERB, “Safety related instrumentation and control for pressurised heavy water
reactor based nuclear power plants,” January 2003. AERB/NPP-PHWR/SG/D-20.

[27] “Software for computer based systems important to safety in nuclear power
plants,” 2000. Safety standards series No. NS-G-1.1.

[28] “Computer based systems of pressurised heavy water reactors.”
http://www.aerb.gov.in/t/publications/codesguides/sg-d-25.pdf, January 2010.
Guide no. AERB/NPP-PHWR/SG/D-25.

References / 123

[29] B. G. Blair, “Nukes: A lesson from russia.”
http://www.cdi.org/nuclear/blair071101.html, July 2001. The Washington Post,
Wednesday, July 11, 2001, Page A19.

[30] K. Poulsen, “Slammer worm crashed Ohio nuke plant network.”
http://www.securityfocus.com/news/6767, August 2003. Securityfocus.

[31] B. Krebs, “Cyber incident blamed for nuclear power plant shutdown,” June 2008.
The Washington Post, June 5, 2008.

[32] N. Falliere, L. O. Murchu, and E. Chien, “W32.stuxnet dossier,” tech. rep.,
Symantec, February 2011. Version 1.4.

[33] M. Hecht and H. Hecht, “Digital systems software requirements guidelines,” tech.
rep., Nuclear Regulatory Commission, Washington, DC, June 2001. Vol.2, Failure
Descriptions, Contract RES-00-037.

[34] IAEA, “Implementing digital instrumentation and control systems in the
modernization of nuclear power plants,” Tech. Rep. NP-T-1.4, IAEA, 2009.

[35] IEC-61508-5, “Functional safety of electrical, electronic, programmable
electronic safety-related systems, part 5: Examples of methods for the
determination of safety integrity levels,” tech. rep., International Electrotechnical
Commission, 1998.

[36] R. W. Butler and G. B. Finelli, “The infeasibility of quantifying the reliability
of life-critical real-time software,” IEEE Transactions on Software Engineering,
vol. 19, pp. 3–12, 1993.

[37] B. Littlewood, “The problems of assessing software reliability ...when you really
need to depend on it,” in in Proceedings of SCSS-2000, Springer-Verlag, 2000.

[38] Y. Jia and M. Harman, “An analysis and survey of the development of mutation
testing,” IEEE Transactions on Software Engineering, vol. 37, pp. 649–678, 2011.

[39] B. Littlewood, “Software reliability modelling: achievements and limitations,” in
CompEuro’91. Advanced Computer Technology, Reliable Systems and Applications.
5th Annual European Computer Conference. Proceedings., pp. 336–344, IEEE,
1991.

[40] T.-L. Chu, M. Yue, G. Martinez-Guridi, and J. Lehner, “Review of quantitative
software reliability methods,” 2010. Brookhaven National Laboratory Letter
report, Digital system software PRA, JCN N-6725.

[41] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance approach
to reliability of software operation,” in Proc. 8th IEEE Int. Symp. on Fault-Tolerant
Computing (FTCS-8), pp. 3–9, 1978.

[42] S. Brilliant, J. Knight, and N. Leveson, “Analysis of faults in an n-version software
experiment,” Software Engineering, IEEE Transactions on, vol. 16, no. 2, pp. 238–
247, 1990.

References / 124

[43] T.L.Chu, G. M. Guridi, M. Yue, J. Lehner, and P. Samanta, “Traditional
probabilistic risk assessment methods for digital systems.”
www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6962/cr6962.pdf,
May 2008.

[44] Courtois, A. Geens, M. Jarvinen, and P. Suvanto, “Licensing of safety critical
software for nuclear reactors common position of seven european nuclear
regulators and authorised technical support organisations,” 2010. Revision 2010.

[45] D. C. Stidolph and J. Whitehead, “Managerial issues for the consideration and
use of formal methods,” in In Stefania Gnesi, Keijiro Araki, and Dino Mandrioli
(eds.), FME 2003, International Symposium of Formal Methods Europe, pp. 8–14,
2003.

[46] B. Meyer, “On formalism in specifications,” IEEE Softw., vol. 2, pp. 6–26, Jan.
1985.

[47] S. Lauesen and O. Vinter, “Preventing requirement defects: An experiment in
process improvement,” Requir. Eng., vol. 6, no. 1, pp. 37–50, 2001.

[48] C. Schwaber, “The root of the problem: Poor requirements,” tech. rep., Forrester
Research. IT View Research Document.

[49] N. Mike, J. Clark, and M. A. Spurlock, “Curing the software requirements and cost
estimating blues,” Nov-Dec 1999. The Defense Acquisition University Program
Manager Magazine.

[50] R. R. Lutz, “Analyzing software requirements errors in safety-critical, embedded
systems,” in Proceedings of the IEEE International Symposium on Requirements
Engineering, pp. 126–133, 1993.

[51] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival,
“The ASTRÉE analyzer,” Programming Languages and Systems, pp. 140–140,
2005.

[52] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods:
Practice and experience,” ACM Comput. Surv, p. 2009.

[53] J. Jacky, “Specifying a safety-critical control system in z,” IEEE Trans. Softw. Eng.,
vol. 21, pp. 99–106, Feb. 1995.

[54] J. Yoo, E. Jee, and S. S. Cha, “Formal modeling and verification of safety-critical
software,” IEEE Softw., vol. 26, pp. 42–49, May 2009.

[55] D. Craigen, S. Gerhart, and T. Ralston, “Case study: Darlington nuclear
generating station,” IEEE Softw., vol. 11, pp. 30–39, 28, Jan. 1994.

[56] C. B. Jones, Systematic software development using VDM (2nd ed.). Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1990.

[57] J. M. Spivey, Understanding Z: a specification language and its formal semantics.
New York, NY, USA: Cambridge University Press, 1988.

References / 125

[58] J.-R. Abrial, The B-book: assigning programs to meanings. New York, NY, USA:
Cambridge University Press, 1996.

[59] P. G. Larsen, J. Fitzgerald, and T. Brookes, “Applying formal specification in
industry,” IEEE Softw., vol. 13, pp. 48–56, May 1996.

[60] P. Behm, P. Benoit, A. Faivre, and J. M. Meynadier, “METEOR : A successful
application of B in a large project,” in Proceedings of FM’99: World Congress on
Formal Methods (J. M. Wing, J. Woodcock, and J. Davies, eds.), no. 1709 in
Lecture Notes in Computer Science (Springer-Verlag), pp. 369–387, Springer-
Verlag, Sept. 1999.

[61] H. Baumeister and D. Bert, “Algebraic specification in CASL,” in Software
specification Methods: An Overview Using a Case Study (M. Frappier and
H. Habrias, eds.), ch. 15, ISTE Publishing Company, April 2006.

[62] V. S. Alagar, K. Periyasamy, and K. Periyasamy, Specification of Software Systems.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 1st ed., 1998.

[63] E. Dürr and J. van Katwijk, “VDM++: a formal specification language for
object-oriented designs,” in Proceedings of the seventh international conference on
Technology of object-oriented languages and systems, TOOLS 7, (Hertfordshire, UK,
UK), pp. 63–77, Prentice Hall International (UK) Ltd., 1992.

[64] The Object-Z specification language. Kluwer Academic Publishers, 2000.

[65] “Object constraint language specification.” http://www.omg.org/spec/OCL/2.3.1,
January 2012.

[66] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of JML: a behavioral
interface specification language for Java,” SIGSOFT Softw. Eng. Notes, vol. 31,
pp. 1–38, May 2006.

[67] M. Barnett, Leino, and W. Schulte, The Spec# Programming System: An Overview,
vol. 3362/2005 of Lecture Notes in Computer Science, ch. 3, pp. 49–69. Berlin /
Heidelberg: Springer, Jan. 2005.

[68] “jmlc, a tool to compile JML annotated java files with runtime assertion checks.”
http://www.eecs.ucf.edu/~leavens/JML2/docs/man/jmlc.html.

[69] B. Meyer, Object-Oriented Software Construction. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1st ed., 1988.

[70] S. Owre, J. M. Rushby, and N. Shankar, “PVS: A prototype verification system,”
in Proceedings of the 11th International Conference on Automated Deduction:
Automated Deduction, CADE-11, (London, UK, UK), pp. 748–752, Springer-
Verlag, 1992.

[71] S. Owre, J. M. Rushby, N. Shankar, and D. W. J. Stringer-Calvert, “PVS: An
experience report,” in Proceedings of the International Workshop on Current Trends
in Applied Formal Method: Applied Formal Methods, FM-Trends 98, (London, UK,
UK), pp. 338–345, Springer-Verlag, 1999.

References / 126

[72] S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton,
“Experiences using lightweight formal methods for requirements modeling,” IEEE
Trans. Softw. Eng., vol. 24, pp. 4–14, Jan. 1998.

[73] J. Crow and B. Di Vito, “Formalizing space shuttle software requirements: four
case studies,” ACM Trans. Softw. Eng. Methodol., vol. 7, pp. 296–332, July 1998.

[74] G. L. Steele, Jr., Common LISP: the language (2nd ed.). Newton, MA, USA: Digital
Press, 1990.

[75] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, “A history of haskell: being
lazy with class,” in Proceedings of the third ACM SIGPLAN conference on History of
programming languages, HOPL III, (New York, NY, USA), pp. 12–1–12–55, ACM,
2007.

[76] H. Sondergaard and P. Sestoft, “Referential transparency, definiteness
and unfoldability,” Acta Informatica, vol. 27, pp. 505–517, 1990.
10.1007/BF00277387.

[77] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood,
“sel4: formal verification of an os kernel,” in Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, SOSP ’09, (New York, NY, USA),
pp. 207–220, ACM, 2009.

[78] M. Fowler, Domain-specific languages. Addison-Wesley Professional, 2010.

[79] A. Hall, “Realising the benefits of formal methods,” Formal Methods and Software
Engineering, pp. 1–4, 2005.

[80] J. Barnes, High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, 2003.

[81] R. Kemmerer, “Testing formal specifications to detect design errors,” Software
Engineering, IEEE Transactions on, no. 1, pp. 32–43, 1985.

[82] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and verifying real-time
systems by means of the synchronous data-flow language lustre,” IEEE Trans.
Softw. Eng., vol. 18, pp. 785–793, Sept. 1992.

[83] J. M. Wing, Hints to Specifiers, pp. 57–77. Academic Press, 1996.

[84] C. DeJong, M. Gibble, J. Knight, and L. Nakano, “Formal specifications: A
systematic evaluation,” tech. rep., Department of Computer Science, University
of Virginia, Charlottesville, VA, USA, June 1997. Technical Report CS-97-09.

[85] J. C. Knight, C. L. DeJong, M. S. Gibble, and L. G. Nakano, “Why are formal
methods not used more widely?,” pp. 1–12, September 1997. The Fourth NASA
Langley Formal Methods Workshop, NASA Conference Publication 3356.

[86] F. X. Dormoy, “Scade 6: a model based solution for safety critical software
development,” in In Embedded Real-Time Systems Conference, 2008.

References / 127

[87] M. Güdemann, F. Ortmeier, and W. Reif, “Using deductive cause-consequence
analysis (DCCA) with SCADE,” Computer Safety, Reliability, and Security, pp. 465–
478, 2007.

[88] P. Caspi, C. Mazuet, R. Salem, and D. Weber, “Formal design of distributed
control systems with lustre,” Computer Safety, Reliability and Security, pp. 687–
687, 1999.

[89] J. Botaschanjan, L. Kof, C. Kühnel, and M. Spichkova, “Towards verified
automotive software,” in ACM SIGSOFT Software Engineering Notes, vol. 30,
pp. 1–6, ACM, 2005.

[90] A. Lawrence and M. Seisenberger, “Verification of railway interlockings in
SCADE,” in AVOCS, vol. 10, pp. 112–114, 2011.

[91] H. Wang, S. Liu, and C. Gao, “Study on model-based safety verification of
automatic train protection system,” in Computational Intelligence and Industrial
Applications, 2009. PACIIA 2009. Asia-Pacific Conference on, vol. 1, pp. 467–470,
Nov.

[92] G. Berry, “Synchronous design and verification of critical embedded systems using
SCADE and esterel,” in Proceedings of the 12th international conference on Formal
methods for industrial critical systems, pp. 2–2, Springer-Verlag, 2007.

[93] E. M. Clarke, “The birth of model checking,” 25 Years of Model Checking, pp. 1–26,
2008.

[94] E. A. Emerson, “The beginning of model checking: A personal perspective,” 25
Years of Model Checking, pp. 27–45, 2008.

[95] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang, “Symbolic
model checking: 1020 states and beyond,” Information and computation, vol. 98,
no. 2, pp. 142–170, 1992.

[96] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu, “Symbolic model
checking using sat procedures instead of BDDs,” in Proceedings of the 36th
annual ACM/IEEE Design Automation Conference, DAC ’99, (New York, NY, USA),
pp. 317–320, ACM, 1999.

[97] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded model
checking,” Advances in computers, vol. 58, pp. 117–148, 2003.

[98] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi,
“Benefits of bounded model checking at an industrial setting,” in Computer Aided
Verification, pp. 436–453, Springer, 2001.

[99] R. Jhala and R. Majumdar, “Software model checking,” ACM Computing Surveys
(CSUR), vol. 41, no. 4, p. 21, 2009.

[100] E. A. Strunk, M. A. Aiello, and J. C. Knight, “A survey of tools for model checking
and model-based development,” tech. rep., 2006. Technical Report, CS-2006-17.

References / 128

[101] P. R. Gluck and G. J. Holzmann, “Using SPIN model checking for flight software
verification,” in Aerospace Conference Proceedings, 2002. IEEE, vol. 1, pp. 1–105,
IEEE, 2002.

[102] D. Angeletti, E. Giunchiglia, M. Narizzano, A. Puddu, and S. Sabina, “Using
bounded model checking for coverage analysis of safety-critical software in an
industrial setting,” Journal of Automated Reasoning, vol. 45, no. 4, pp. 397–414,
2010.

[103] G. Brat, K. Havelund, S. Park, and W. Visser, “Java PathFinder - second generation
of a Java model checker,” in In Proceedings of the Workshop on Advances in
Verification, Citeseer, 2000.

[104] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella, “NuSMV 2: An opensource tool for symbolic
model checking,” in Computer Aided Verification, pp. 241–268, Springer, 2002.

[105] S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas, “PVS: Combining
specification, proof checking, and model checking,” in Computer Aided
Verification, pp. 411–414, Springer, 1996.

[106] L. Hoffman, “Talking model-checking technology,” Communications of the ACM,
vol. 51, no. 7, pp. 110–112, 2008.

[107] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, H. Zheng,
et al., “Bandera: Extracting finite-state models from java source code,” in
Software Engineering, 2000. Proceedings of the 2000 International Conference on,
pp. 439–448, IEEE, 2000.

[108] MISRA, “Guidelines for the use of the C language in critical systems.”
http://www.misra-c.com, October 2004.

[109] MISRA, “Guidelines for the use of the C++ language in critical systems.”
http://www.misra-cpp.com, June 2008.

[110] JSF, “Joint strike fighter air vehicle C++ coding standards for the system
development and demonstration program.”
http://www.research.att.com/~bs/JSF-AV-rules.pdf, December 2005. Doc. No.
2RDU00001 Rev C.

[111] B. A. Hamilton, “Software security assessment tools review,” tech. rep., Naval
Ordnance Safety and Security Activity, 2009.

[112] “ISO/DIS 26262-8:2009. Draft International Standard Road vehicles - Functional
safety - Part 8: Supporting processes,” 2009.

[113] “Software consideration in airborne systems and equipment certification, rtca-
requirements and technical concepts for aviation,” 1992.

[114] “EN 50128: Railway applications " communications, signalling and processing
systems " software for railway control and protection systems,” 2000.

[115] S. Brown, “Overview of IEC 61508,” Nuclear Engineer, vol. 42, pp. 39–44, Mar-
Apr 2001.

References / 129

[116] W. Cullyer and N. Storey, “Tools and techniques for the testing of safety-critical
software,” Computing Control Engineering Journal, vol. 5, pp. 239 –244, oct 1994.

[117] L. Hatton, “Safer language subsets: an overview and a case history, MISRA C,”
Information and Software Technology, vol. 46, no. 7, pp. 465 – 472, 2004.

[118] C. Kaner, “What is a good test case,” Relation, vol. 10, no. 1.100, p. 5569, 2003.
http://www.kaner.com/pdfs/GoodTest.pdf.

[119] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A practical
tutorial on modified condition/ decision coverage,” tech. rep., NASA, 2001.

[120] M. A. Hennell, M. R. Woodward, and D. Hedley, “On program analysis,” Inf.
Process. Lett., pp. 136–140, 1976.

[121] M. Woodward, D. Hedley, and M. Hennell, “Experience with path analysis and
testing of programs,” IEEE Transactions on Software Engineering, vol. 6, pp. 278–
286, 1980.

[122] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” Software
Engineering, IEEE Transactions on, vol. SE-10, pp. 438 –444, july 1984.

[123] P. S. Loo and W. K. Tsai, “Random testing revisited,” Information and Software
Technology, vol. 30, no. 7, pp. 402–417, 1988.

[124] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann, 1 ed., November 2006.

[125] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive Random Testing,” Advances in
Computer Science - ASIAN 2004, pp. 320–329, 2004.

[126] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated random
testing,” SIGPLAN Not., vol. 40, pp. 213–223, June 2005.

[127] C. Pacheco, Directed Random Testing. Ph.D., MIT Department of Electrical
Engineering and Computer Science, Cambridge, Massachusetts, June 2009.

[128] M. Mitchell, “An introduction to genetic algorithms,” Cambridge, Massachusetts
London, England, Fifth printing, 1999.

[129] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test-data generation using genetic
algorithms,” Software Testing, Verification and Reliability, vol. 9, no. 4, pp. 263–
282, 1999.

[130] M. Pei, E. Goodman, Z. Gao, and K. Zhong, “Automated software test data
generation using a genetic algorithm,” Michigan State University, Tech. Rep, 1994.

[131] J. A. Jones and M. J. Harrold, “Test-Suite Reduction and Prioritization for
Modified Condition/Decision Coverage,” IEEE Trans. Softw. Eng., vol. 29,
pp. 195–209, Mar. 2003.

[132] D. Jeffrey and N. Gupta, “Improving Fault Detection Capability by Selectively
Retaining Test Cases during Test Suite Reduction,” Software Engineering, IEEE
Transactions on, vol. 33, no. 2, pp. 108–123, 2007.

References / 130

[133] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing Test Cases For
Regression Testing,” Software Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[134] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in development
environment,” in Proceedings of the 2002 ACM SIGSOFT international symposium
on Software testing and analysis, ISSTA ’02, (New York, NY, USA), pp. 97–106,
ACM, 2002.

[135] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test set
minimization on fault detection effectiveness,” Softw: Pract. Exper., vol. 28, no. 4,
pp. 347–369, 1998.

[136] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini, “Test set size
minimization and fault detection effectiveness: a case study in a space
application,” pp. 522–528, Aug. 1997.

[137] S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: a survey,” Software Testing, Verification and Reliability, 2010.

[138] B. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of unix
utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32–44, 1990.

[139] B. Miller, D. Koski, C. Lee, V. Maganty, R. Murthy, A. Natarajan, and J. Steidl,
Fuzz revisited: A re-examination of the reliability of UNIX utilities and services.
University of Wisconsin-Madison, Computer Sciences Department, 1995.

[140] E. W. Dijkstra, “The humble programmer,” Commun. ACM, vol. 15, pp. 859–866,
Oct. 1972.

[141] E. J. Weyuker, “On Testing Non-Testable Programs,” The Computer Journal,
vol. 25, pp. 465–470, Nov. 1982.

[142] D. Hoffman, “A taxonomy for test oracles.”
http://www.softwarequalitymethods.com/Papers/OracleTax.pdf, March 1998.

[143] A. Rajan, M. W. Whalen, and M. P. Heimdahl, “The effect of program and
model structure on mc/dc test adequacy coverage,” in Proceedings of the 30th
international conference on Software engineering, ICSE ’08, (New York, NY, USA),
pp. 161–170, ACM, 2008.

[144] M. Staats, G. Gay, M. W. Whalen, and M. P. E. Heimdahl, “On the danger of
coverage directed test case generation,” in FASE, pp. 409–424, 2012.

[145] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and Billions of Constraints:
Whitebox Fuzz Testing in Production,” tech. rep., Tech. rep., Microsoft Research,
2012.

[146] J. Neystadt, “Automated Penetration Testing with White-Box Fuzzing,” MSDN
Library, 2008.

[147] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection: Help for the
practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

References / 131

[148] R. Hamlet, “Testing programs with the aid of a compiler,” Software Engineering,
IEEE Transactions on, no. 4, pp. 279–290, 1977.

[149] T. A. Budd and D. Angluin, “Two Notions of Correctness and Their Relation to
Testing,” Acta Informatica, vol. 18, pp. 31–45, 1982.

[150] F. Baldwin, Douglas ; Sayward, “Heuristics for determining equivalence of
program mutations.,” tech. rep., Georgia inst of Tech, Atlanta school of
information and computer Science, 1979.

[151] J. Pan, “Using constraints to detect equivalent mutants,” Master’s thesis, George
Mason University, 1994.

[152] D. Schuler and A. Zeller, “(Un-)Covering Equivalent Mutants,” in Software Testing,
Verification and Validation (ICST), 2010 Third International Conference on, pp. 45
–54, april 2010.

[153] A. Offutt and J. Pan, “Detecting equivalent mutants and the feasible path
problem,” in Computer Assurance, 1996. COMPASS ’96, ’Systems Integrity.
Software Safety. Process Security’. Proceedings of the Eleventh Annual Conference
on, pp. 224 –236, jun 1996.

[154] B. J. Gruen, D. Schuler, and A. Zeller, “The impact of equivalent mutants,” in
Mutation ’09: Proceedings of the 3rd International Workshop on Mutation Analysis,
pp. 192–199, April 2009.

[155] A. Wood, “Software reliability growth models,” Tandem Computers Inc., Tech. Rep,
pp. 96–1, 1996.

[156] S. Yamada, M. Ohba, and S. Osaki, “S-shaped software reliability growth models
and their applications,” Reliability, IEEE Transactions on, vol. 33, no. 4, pp. 289–
292, 1984.

[157] Z. Jelinski and P. B. Moranda, “Software reliability research,” Statistical computer
performance evaluation, pp. 465–484, 1972.

[158] M. Ohba, “Software reliability analysis models,” IBM Journal of research and
Development, vol. 28, no. 4, pp. 428–443, 1984.

[159] H.-J. Shyur, “A stochastic software reliability model with imperfect-debugging
and change-point,” Journal of Systems and Software, vol. 66, no. 2, pp. 135 –
141, 2003.

[160] J. Pearl, “Bayesian networks,” tech. rep., Department of Statistics Papers,
Department of Statistics, UCLA, UC Los Angeles, August 2011.

[161] A. Helminen, Reliability estimation of safety-critical software-based systems using
Bayesian networks. Radiation and Nuclear Safety Authority, 2001.

[162] J. D. Lawrence, “Conceptual software reliability prediction models for nuclear
power plant safety systems,” tech. rep., Lawrence Livermore National Laboratory,
2000.

References / 132

[163] B. A. Gran, “Assessment of programmable systems using bayesian belief nets,”
Safety Science, vol. 40, no. 9, pp. 797 – 812, 2002.

[164] G. Dahll and B. A. Gran, “The use of bayesian belief nets in safety assessment of
software based systems,” International Journal of General System, vol. 29, no. 2,
pp. 205–229, 2000.

[165] H. seop Eom, G. yong Park, S. cheol Jang, H. S. Son, and H. G. Kang, “V&V-based
remaining fault estimation model for safety-critical software of a nuclear power
plant,” Annals of Nuclear Energy, vol. 51, no. 0, pp. 38 – 49, 2013.

[166] K. Goseva-Popstojanova, A. P. Mathur, and K. S. Trivedi, “Comparison
of architecture-based software reliability models,” in Software Reliability
Engineering, 2001. ISSRE 2001. Proceedings. 12th International Symposium on,
pp. 22–31, IEEE, 2001.

[167] S. S. Gokhale, “Architecture-based software reliability analysis: Overview and
limitations,” Dependable and Secure Computing, IEEE Transactions on, vol. 4, no. 1,
pp. 32–40, 2007.

[168] Y. Zhang, Reliability quantification of nuclear safety-related software. PhD thesis,
Massachusetts Institute of Technology, 2004.

[169] H. Pham, Handbook of reliability engineering. Springer London etc., 2003.

[170] N. Fuqua, “The applicability of markov analysis methods to reliability,
maintainability, and safety,” Reliability Anal. Center START Sheet, vol. 10, no. 2,
p. 8, 2003.

[171] W.-L. Wang, D. Pan, and M.-H. Chen, “Architecture-based software reliability
modeling,” Journal of Systems and Software, vol. 79, no. 1, pp. 132 – 146, 2006.

[172] J. A. Whittaker, K. Rekab, and M. G. Thomason, “A markov chain model for
predicting the reliability of multi-build software,” Information and Software
Technology, vol. 42, no. 12, pp. 889–894, 2000.

[173] R. C. Cheung, “A user-oriented software reliability model,” Software Engineering,
IEEE Transactions on, no. 2, pp. 118–125, 1980.

[174] K. Goševa-Popstojanova and K. S. Trivedi, “Architecture-based approach to
reliability assessment of software systems,” Performance Evaluation, vol. 45, no. 2,
pp. 179–204, 2001.

[175] S. Chetal, V. Balasubramaniyan, P. Chellapandi, P. Mohanakrishnan,
P. Puthiyavinayagam, C. Pillai, S. Raghupathy, T. Shanmugham, and C. S. Pillai,
“The design of the prototype fast breeder reactor,” Nuclear Engineering and
Design, vol. 236, no. 7-8, pp. 852 – 860, 2006.

[176] P. Swaminathan, Modeling of instrumentation and Control system of prototype fast
Breeder reactor. PhD thesis, Sathyabama university, December 2008.

[177] IGCAR, “System requirement specification for FSIF, NFF, FSTC, TCC, FSEP,
and FSPF,” tech. rep., Indira Gandhi Centre for Atomic Research, 2011.
PFBR/63510/SP/1001 Rev-B.

References / 133

[178] IGCAR, “System requirements specification for reactor startup authorization
logic,” tech. rep., Indira Gandhi Centre for Atomic Research, 2010.
PFBR/66710/SP/1002/Rev.C.

[179] IGCAR, “System requirements specifications for I&C of steam generator tube leak
detection circuit,” tech. rep., Indira Gandhi Centre for Atomic Research, 2006.
PFBR/63370/SP/1003 Rev-D.

[180] IGCAR, “System requirement specification for RTC based core temperature
monitoring system,” tech. rep., Indira Gandhi Centre for Atomic Research, 2009.
PFBR/63110/SP/1007/R-E.

[181] IGCAR, “System requirement specifications for I&C of Radioactive Gaseous
Effluent Circuit,” tech. rep., Indira Gandhi Centre for Atomic Research, 2011.
PFBR/63720/SP/1003/Rev-B.

[182] IGCAR, “System requirement specifications for I&C of common sodium
purification circuits for safety grade decay heat removal system,” tech. rep.,
Indira Gandhi Centre for Atomic Research, 2008. PFBR/63420/SP/1003/Rev.D.

[183] D. L. Parnas, “Software aging,” in Proceedings of the 16th international conference
on Software engineering, pp. 279–287, IEEE Computer Society Press, 1994.

[184] S. Mitkin, “Drakon : The human revolution in understanding programs.”
http://drakon-editor.sourceforge.net/DRAKON.pdf, October 2011.

[185] F. Cesarini and S. Thompson, ERLANG Programming. O’Reilly Media, Inc., 1st ed.,
2009.

[186] U. Wiger, G. Ask, and K. Boortz, “World-class product certification using erlang,”
ACM SIGPLAN Notices, vol. 37, no. 12, pp. 25–34, 2002.

[187] D. Palmer, “musasim : m68k simulator with GDB server based on Musashi.”
http://code.google.com/p/musasim/.

[188] S. I. Sambasivan, “Real time computers for instrumentation and control of PFBR,”
tech. rep., Electronics & Instrumentation Division Electronics & Instrumentation
Group, IGCAR. http://www.igcar.gov.in/benchmark/Engg/21-engg.pdf.

[189] G. Hills, “Safety-critical products: INTEGRITY®-178B RTOS.”
http://www.ghs.com/products/safety_critical/integrity-do-178b.html.

[190] “Python multiprocessing module.”
http://docs.python.org/library/multiprocessing.html.

[191] M. Lutz and D. Ascher, Learning python. O’Reilly Media, Incorporated, 2003.

[192] C. Lattner and V. Adve, “The LLVM Compiler Framework and Infrastructure
Tutorial,” pp. 15–16, 2005.

[193] “Cppcheck : A tool for static C/C++ static code analysis.”
http://sourceforge.net/apps/mediawiki/cppcheck.

References / 134

[194] D. Evans, “Splint - secure programming lint,” tech. rep., 2002. University of
Virginia.

[195] D. Kirkland, “Bogosec: Source code security quality calculator.”
http://public.dhe.ibm.com/software/dw/linux/l-bogosec.pdf, 2006.

[196] D. A. Wheeler, “FlawFinder man page.” http://www.dwheeeler.com/flawfinder,
may 2004.

[197] “RATS: Rough auditing tool for security.” http://www.securesoftware.com.

[198] R. Braakman and C. Schwarz, “Lintian - debian package checker.”
http://lintian.debian.org/.

[199] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic
binary instrumentation,” in Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’07, (New York, NY,
USA), pp. 89–100, ACM, 2007.

[200] B. Perens, “Electric fence malloc debugger.”
http://perens.com/FreeSoftware/ElectricFence/.

[201] K. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A practical
tutorial on modified condition/decision coverage,” 2001.

[202] M. Haahr, “True random number service.” http://www.random.org.

[203] B. Hendrickx and B. Vis, Energiya-Buran: the Soviet space shuttle. Praxis, 2007.

[204] G. Goebel, The Space Shuttle Program. March 2011.
http://vectorsite.net/tashutl.html.

[205] A. Zak, “Buran - the soviet ’space shuttle’,” November 2008.
http://news.bbc.co.uk/2/hi/science/nature/7738489.stm.

[206] T. Addis and J. Addis, Drawing Programs: The Theory and Practice of Schematic
Functional Programming. Springer, 2010.

[207] S. Mitkin, “DRAKON-Erlang: Visual functional programming,” 2012.
http://drakon-editor.sourceforge.net/drakon-erlang/intro.html.

[208] T. Lindahl and K. Sagonas, “Detecting software defects in telecom applications
through lightweight static analysis: A war story,” in Programming Languages and
Systems: Proceedings of the Second Asian Symposium (APLAS’04), volume 3302 of
LNCS, pp. 91–106, Springer, 2004.

[209] T. Lindahl and K. Sagonas, “Practical type inference based on success typings,”
in Proceedings of the 8th ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming, (New York, NY, USA), pp. 167–178, ACM Press, 2006.

[210] “Dialyzer manpage.” http://www.erlang.org/doc/man/dialyzer.html.

[211] I. T. Jolliffe, Principal component analysis. Springer verlag, 2002.

References / 135

[212] Y. Jia and M. Harman, “Higher order mutation testing,” Inf. Softw. Technol.,
vol. 51, pp. 1379–1393, Oct. 2009.

[213] “LDRA Testbed ®.” Liverpool Data Research Associates,
http://www.ldra.com/testbed.asp.

[214] T. Hoare, “The verifying compiler: A grand challenge for computing research,”
in Compiler Construction, pp. 262–272, Springer, 2003.

[215] W. von Hagen, The Definitive Guide to GCC. Apress, 2nd ed. ed., aug 2006.

[216] S. C. Johnson, “A tour through the portable C compiler,” Unix programmers
manual, vol. 2, 1979.

[217] A. Magnusson and P. A. Jonsson, “Portable C Compiler homepage.”
http://pcc.ludd.ltu.se/.

[218] M. Kalos and P. Whitlock, Monte Carlo methods. Wiley-Blackwell, 2008.

[219] A. Wald and J. Wolfowitz, “Tolerance limits for a normal distribution,” The Annals
of Mathematical Statistics, vol. 17, no. 2, pp. 208–215, 1946.

[220] Y.-M. Chou and R. W. Mee, “Determination of sample sizes for setting β-content
tolerance limits controlling both tails of the normal distribution,” Statistics &
probability letters, vol. 2, no. 5, pp. 311–314, 1984.

[221] S. S. Wilks, “Determination of sample sizes for setting tolerance limits,” The
Annals of Mathematical Statistics, vol. 12, no. 1, pp. 91–96, 1941.

[222] P. N. Somerville, “Tables for obtaining non-parametric tolerance limits,” The
Annals of Mathematical Statistics, vol. 29, no. 2, pp. 599–601, 1958.

[223] M. N. Li, Y. K. Malaiya, and J. Denton, “Estimating the number of defects:
a simple and intuitive approach,” in Proc. 7th Int’l Symposium on Software
Reliability Engineering (ISSRE), pp. 307–315, 1998.

[224] N. Fenton, M. Neil, W. Marsh, P. Hearty, D. Marquez, P. Krause, and R. Mishra,
“Predicting software defects in varying development lifecycles using bayesian
nets,” Information and Software Technology, vol. 49, no. 1, pp. 32–43, 2007.

[225] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system
defect density,” in Software Engineering, 2005. ICSE 2005. Proceedings. 27th
International Conference on, pp. 284–292, IEEE, 2005.

[226] P. Knab, M. Pinzger, and A. Bernstein, “Predicting defect densities in source
code files with decision tree learners,” in Proceedings of the 2006 international
workshop on Mining software repositories, pp. 119–125, ACM, 2006.

[227] T. Zimmermann and N. Nagappan, “Predicting defects using network analysis
on dependency graphs,” in Proceedings of the 30th international conference on
Software engineering, pp. 531–540, ACM, 2008.

[228] N. G. Leveson, “Software safety,” tech. rep., SEI Joint Program Office, July 1987.
SEI-CM-6-1(Preliminary).

References / 136

[229] S. Kishore, A. A. Kumar, S. Chandramouli, B. Nashine, K. Rajan,
P. Kalyanasundaram, and S. Chetal, “An experimental study on impingement
wastage of mod 9cr 1mo steel due to sodium water reaction,” Nuclear Engineering
and Design, vol. 243, no. 0, pp. 49 – 55, 2012.

[230] B. Raj and P. Kumar, “Safety adequacy of Indian Fast Breeder Reactor.”
http://www.bhavini.nic.in/attachments/pressrelease/3.11.11rejoinder.pdf.

Figure citations

1. Figure 1.1 on page 3

www.developergeeks.com/article/60/software-reliability-engineering

Author: Brad Stewart (used with permission).

2. Figure 1.2 on page 4

http://web.cecs.pdx.edu/~hamlet/pnsqcintro.pdf

Author: Dick Hamlet (used with permission).

3. Figure 3.1 on page 32

http://en.wikipedia.org/wiki/File:Nuclear_fission.svg

(a free image in public domain).

4. Figure 3.2 on page 33

en.wikipedia.org/wiki/File:Sodium-Cooled_Fast_Reactor_Schemata.svg

(a free image in public domain).

5. Figure 3.5 on page 36

Reference: [229]

Authors: S. Kishore et al. (used with permission).

6. Figure 3.8 on page 39

Reference: [230]

Authors: Baldev Raj and Prabhat Kumar (used with permission).

7. Figure 5.4 on page 50

http://commons.wikimedia.org/wiki/File:Crossover_genes.svg

(a free image in public domain).

137

www.developergeeks.com/article/60/software-reliability-engineering
http://web.cecs.pdx.edu/~hamlet/pnsqcintro.pdf
http://en.wikipedia.org/wiki/File:Nuclear_fission.svg
en.wikipedia.org/wiki/File:Sodium-Cooled_Fast_Reactor_Schemata.svg
http://commons.wikimedia.org/wiki/File:Crossover_genes.svg

	Abstract
	List of figures
	List of tables
	List of equations
	List of acronyms
	I The context
	Introduction
	Background
	The problem statement
	Research questions

	Motivation
	Software in safety-critical systems
	Software in nuclear reactors
	Software failures in nuclear industry
	Issues in software reliability quantification
	Need for a new approach
	This thesis
	Assumptions and limitations
	Structure

	Related work
	In formal methods
	In model checking
	In safety-critical software development, V&V
	In software testing and test coverage
	In mutation testing and test adequacy
	In software reliability growth models (SRGM)
	In Bayesian belief network
	In architecture based approaches
	Summary

	Background information
	Instrumentation and control in nuclear reactors
	Case studies used in the present study
	Fresh subassembly handling system
	Reactor start-up system
	Steam generator tube leak detection system
	Core temperature monitoring system
	Radioactive gaseous effluent system
	Safety grade decay heat removal system

	II Studies on software reliability
	Research methodology
	Software reliability definition
	Choice of case-studies
	Method
	Experimental details
	Software under test
	Software testing
	Parallel processing

	Test adequacy in safety-critical software
	Introduction
	Challenges
	Software in the case studies
	Test generation, verification, and coverage
	Test case generation
	Verification of test cases
	Conservative test coverage

	Mutation testing
	Mutant properties
	Calculating mutant score
	Threat to validity

	Assurance of rigorous testing through test adequacy
	Results
	Summary of results

	Quantification of software reliability
	Prerequisites for the approach
	Set of test cases
	Set of mutants
	A test oracle
	Test adequacy computation
	Compiler correctness

	Software reliability estimation
	Approach - 1
	Approach - 2
	Approach - 3
	Estimating fraction of shared code
	Pseudocode of the approach

	Theoretical results
	Factors affecting the estimated reliability
	Achieving target reliability
	Properties of the software

	Results, discussions, and critical review
	Summary of results

	Some properties of software reliability
	Software reliability vs. number of faults in the software
	Software reliability vs. results of static, dynamic analysis
	Software reliability vs. safety
	Summary of results

	Summary and open problems
	Contributions
	Observations
	Open problems
	Conclusion

	III Appendices
	 Semi-formal software specification
	List of Drakon notations
	An example of semi-formal specification

	 List of mutant operators
	 Data for PCA of mutant characteristics
	References
	Figure citations

